InnoDB行锁机制(gap锁是如何阻塞插入操作的)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sun_ashe/article/details/85390339

InnoDB行锁机制(gap锁是如何阻塞插入操作的)

InnoDB 在执行insert操作时,并不会显示加锁,如果是主键插入,只会设置对应记录上的trx id隐藏列,称为隐式加锁。

一、假设场景

比如说如下表结构

mysql> show create table t7\G
*************************** 1. row ***************************
       Table: t7
Create Table: CREATE TABLE `t7` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(10) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=utf8mb4
1 row in set (0.00 sec)

表中数据如下

mysql> select * from t7;
+----+------+
| id | name |
+----+------+
| 10 | aaa  |
+----+------+
1 row in set (0.00 sec)

假设事务操作如下

session-1 session-2
begin; begin
select * from t7 where id =5 for update;
insert into t7(id,name) values(3,‘aaa’);

sesison-2 在执行插入操作时会被阻塞,确切来说,是被事务1session-1中的事务阻塞的。这种阻塞是如何实现的呢?

二、加锁过程分析

对于session-1中的事务(假设为trx1)来讲,由于select操作未能精确定外到数据行,所以需要在下一条记录上加gap锁。具体的加锁情况如下

2018-12-28T13:48:21.274985+08:00 3 [Note] InnoDB: current trx: 1806424 rec lock pool total size: 8
2018-12-28T13:48:21.281071+08:00 3 [Note] InnoDB: trx_id: 1806424 create a record lock and add it to lock hash table,
space_id: 78
page_no: 3
heap_no: 2
n_bits: 72
primary key: 1
is record lock: 1
is waiting: 0
is gap: 1
is record not gap: 0
is insert intention: 0
lock_mode: 3  (0:LOCK_IS, 1:LOCK_IX, 2:LOCK_S, 3:LOCK_X, 4:LOCK_AUTO_INC, 5:LOCK_NONE)

而对于session-2中的事务,加锁类型为const ulint type_mode = LOCK_X | LOCK_GAP | LOCK_INSERT_INTENTION; 然后会去检测插入行的下一条记录是否存在锁,如果存在,检测是否存在锁冲突

lock_rec_has_to_wait(trx_t const*, unsigned long, ib_lock_t const*, bool) lock0lock.cc:856

锁冲突过程如下

  • 通过锁冲突矩阵,如果通过了,直接返回false,也就是不冲突。锁冲突矩阵如下,其实就是一个二维数组。return(lock_compatibility_matrix[mode1][mode2]);
 * Note that for rows, InnoDB only acquires S or X locks.
 * For tables, InnoDB normally acquires IS or IX locks.
 * S or X table locks are only acquired for LOCK TABLES.
 * Auto-increment (AI) locks are needed because of
 * statement-level MySQL binlog.
 * See also lock_mode_compatible().
 */
static const byte lock_compatibility_matrix[5][5] = {
 /**         IS     IX       S     X       AI */
 /* IS */ {  TRUE,  TRUE,  TRUE,  FALSE,  TRUE},
 /* IX */ {  TRUE,  TRUE,  FALSE, FALSE,  TRUE},
 /* S  */ {  TRUE,  FALSE, TRUE,  FALSE,  FALSE},
 /* X  */ {  FALSE, FALSE, FALSE, FALSE,  FALSE},
 /* AI */ {  TRUE,  TRUE,  FALSE, FALSE,  FALSE}
};
  • 如果锁冲突矩阵返回检测失败,也就是冲突,再下面额外的检测条件
  • 1.如果是supremum行或者锁类型为只锁gap && 锁类型没有插入意向属性,则不存在冲突
  • 2.如果要创建的锁类型没有插入意向属性 && 老得锁结构是gap锁 则不冲突
    1. 如果新创建的锁为gap锁 并且 已存在的锁不是gap锁,则不冲突
  • 4.如果已经存在的锁为插入意向,则不冲突,此逻辑需要进行测试验证是否正确。
  • 如果没有满足锁冲突矩阵,并且上面的4个条件也都不满足,就证明锁冲突了。

MySQL这样设计锁冲突检测的好处就是,可以明确某些场景下锁是不冲突的,所有不符合的都当作冲突,然后以后发现某些条件下符合不冲突的情况,再添加进去,到目前为止,也只加了上面的那四个特例。

锁冲突检测代码如下,自行查阅。

if (trx != lock2->trx
	    && !lock_mode_compatible(static_cast<lock_mode>(
			             LOCK_MODE_MASK & type_mode),
				     lock_get_mode(lock2))) {

		/* We have somewhat complex rules when gap type record locks
		cause waits */

		if ((lock_is_on_supremum || (type_mode & LOCK_GAP))
		    && !(type_mode & LOCK_INSERT_INTENTION)) {

			/* Gap type locks without LOCK_INSERT_INTENTION flag
			do not need to wait for anything. This is because
			different users can have conflicting lock types
			on gaps. */

			return(FALSE);
		}

		if (!(type_mode & LOCK_INSERT_INTENTION)
		    && lock_rec_get_gap(lock2)) {

			/* Record lock (LOCK_ORDINARY or LOCK_REC_NOT_GAP
			does not need to wait for a gap type lock */

			return(FALSE);
		}

		if ((type_mode & LOCK_GAP)
		    && lock_rec_get_rec_not_gap(lock2)) {

			/* Lock on gap does not need to wait for
			a LOCK_REC_NOT_GAP type lock */

			return(FALSE);
		}

		if (lock_rec_get_insert_intention(lock2)) {

			/* No lock request needs to wait for an insert
			intention lock to be removed. This is ok since our
			rules allow conflicting locks on gaps. This eliminates
			a spurious deadlock caused by a next-key lock waiting
			for an insert intention lock; when the insert
			intention lock was granted, the insert deadlocked on
			the waiting next-key lock.

			Also, insert intention locks do not disturb each
			other. */

			return(FALSE);
		}

		return(TRUE);
	}

	return(FALSE);

那么对应到本例中的情况
插入语句加锁如下

2018-12-28T13:48:21.274985+08:00 3 [Note] InnoDB: current trx: 1806425 rec lock pool total size: 8
2018-12-28T13:48:21.281071+08:00 3 [Note] InnoDB: trx_id: 1806425 create a record lock and add it to lock hash table,
space_id: 78
page_no: 3
heap_no: 2
n_bits: 72
primary key: 1
is record lock: 1
is waiting: 1
is gap: 1
is record not gap: 0
is insert intention: 1
lock_mode: 3  (0:LOCK_IS, 1:LOCK_IX, 2:LOCK_S, 3:LOCK_X, 4:LOCK_AUTO_INC, 5:LOCK_NONE)

不满足以上的任何锁冲突检测通过条件,所以被阻塞。

从我们最初对行锁的认识也能够说的通,对于trx1中,我们查询select * from t7 where id =5 for update,返回数据为空,那么为了避免幻象,所有可以插入5的地方都不能插入数据。所以trx2插入数据被阻塞是应该的。

猜你喜欢

转载自blog.csdn.net/sun_ashe/article/details/85390339
今日推荐