GAN系列学习——前生今世

                        GAN系列学习——前生今世

1.GAN的 ‘前世’?

大家都知道GAN是Ian Goodfellow 2 014年放出的一篇开山之作,在深度学习界评价很高,可以说GAN的出现,给深度学习界带来了很多的研究(shui)课(lun)题(wen)。但是如果说GAN是另外一种网络的变种,不知道你是否相信呢?但是有一个人是坚信不疑的,这个人就是德国AI科学家Jürgen Schmidhuber,说到这个人可能很多人不太了解,毕竟不是像Hinton Yoshua bengio, Yan lecun这样出名的人,事实上他对AI界做出了很大的贡献,LSTM就是他在97年发明的。其本人照片如下:

OK!Jürgen Schmidhuber之所以认为GAN是其他模型的变种,主要他在92年提出了一种PM(Predictability Minimization)模型,其与GAN有一些相似之处(起码他自己这样认为),所以他一直认为GAN是goodfellow在自己PM模型上的改进。他92年提出的PM模型才是“第一个对抗网络”,而GAN跟PM的主要差别仅仅在于方向反过来了,可以把GAN名字改成“inverse PM”,即反过来的PM。并且多次与goodfellow邮件往来说明这个问题,毫无疑问得到了goodfellow的否决。事情甚至发展到Jürgen Schmidhuber在2016NIPS大会上与goodfellow公开互怼。

事情是这样子的:

2016NIPS大会上,goodfellow正在做GAN的tutorial,这时,Jürgen Schmidhuber打断了演讲,站起来首先介绍了一下自己92年提出的PM模型,其实就差直接阐明PM和GAN很相似,然后反问goodfellow,如何看待GAN和PM的相似点。

外人看上去只是普通的一次提问或者辩证,但是goodfellow反应及其激烈,甚至都要发火了。原来早在GAN提出之后,他们两人就已经互相往来邮件讨论过这个问题,大概流程就是Jürgen Schmidhuber认为GAN是他的PM模型的演化,现在GAN那么出名了,goodfellow应该承认PM对GAN的贡献。Goodfellow当然说不,自己的成果平白无故被上了一个套,要谁谁也不干,而且在本质上GAN和PM也有很大的不同。但是Jürgen Schmidhuber还是不死心,以至于事情闹到了NIPS大会上,结果就是:

可能是动了真怒,Goodfellow直接明说他们之前已经在邮件里讨论了这个问题,不想牵扯到NIPS大会上来做无意义的争辩,最后结果就是goodfelllow的一番话赢得了在场大佬的多次掌声。

题外话

Jürgen Schmidhuber已经五十多岁了,而且是Dalle Molle人工智能研究所的联席主任。他表示自己的早期研究常常被忽视,另外据网上传言,LeCun教授在一封电子邮件中说道,“Jürgen太想得到大家的认可,每次别人讲完话他都会站起来,说刚刚提出的东西有他的功劳,但是这种方式却不是特别恰当。”

实际上,Jürgen Schmidhuber的确对人工智能界做出了很大的贡献,LSTM就是一个典型的例子。

接下来简单介绍一下PM模型。可以用下图来表示PM模型的原理,图片来自郑华滨的知乎文章,下文有关PM的部分均是从他的文章中总结而来,以简单的文字形式来表述,详情可参考链接:

https://zhuanlan.zhihu.com/p/27159510?utm_source=wechat_session&utm_medium=social

图片的左边是一个自编码器,自编码器对输入输出重构,输入数据经过编码解码后得到输出数据,输入输出存在一个重构误差,当重构误差越小时,说明自编码器中的隐藏层越能学习到表示数据的特征,但是我们希望不仅能学习到特征,而且希望学习到好的特征,于是Jürgen Schmidhuber就提出了PM模型,如何衡量好的标准,假设自编码器隐藏层学习到的特征是三维的向量,每一维用c来表示,有人认为,当每一维的特征向量是相互独立即解耦的,说明特征就很好,那么Jürgen Schmidhuber就提出使用一个预测器f(PM中的P部分),f根据其中两个维度的值去预测另外一个维度的值,如果预测的很准,说明他们C之间的独立性就很差,解耦性不好,学习到的特征不好,如果预测的很不准,说明编码器学习到的特征很好。既然这样,可以通过一个损失函数

建立编码器和f预测能力之间的对抗,自编码器希望得到很好的特征表示,令c相互独立,但是f希望预测的很准,预测的准就表示c的独立性差,所以他们之间也有一种‘对抗’,然后通过对抗得到很好的特征表示。

2.PM与GAN的区别:

乍一看或许他们两个很相似,都有‘对抗’机制,实际上差别还是很大的。

首先,PM种的对抗只是相当于一种对获得好的特征表示的辅助,但是GAN的特点就是对抗训练,对抗训练是GAN 的主体。

其次,PM是从复杂分布得到的解耦分布做对抗,而GAN直接对复杂的原始分布做处理,得到最后的判别,所以说GAN或许是inversePM。

再者,PM判别每一个数据的维度,而GAN最后的判别是一维的,即对与错的程度(概率)。

而且PM的作用有限,拓展性不强,而GAN可以用在很多领域,拓展性更强。

我还是很支持GAN是原创的。

有关GAN前世就简单介绍到这里,下文介绍GAN本身的部分,包括GAN的特点,优缺点总结,常用的训练tricks,以及GAN的一些改进成果,有基础的可以直接跳过这一部分。本文的第三部分会介绍一些GAN的变种以及复现很好的GitHub代码链接,感兴趣的可以看一下。在本文的第四部分,我会列举一些GAN的应用,介绍其原理,同时附有github代码链接。

2. GAN的今生

首先,啰嗦一下什么是GAN(Generative adversarial nets),中文是生成对抗网络,他是一种生成式模型,也是一种无监督学习模型。其最大的特点是为深度网络提供了一种对抗训练的方式,此方式有助于解决一些普通训练方式不容易解决的问题。并且Yan lecun明确表示GAN是近几十年除了面包机最伟大的发明,并且希望是自己发明的GAN。

 关于GAN的入门可以参考机器学习算法全栈工程师公众号之前的文章:GAN入门与实践,里面包含了GAN的入门介绍以及生成人脸图片的实践tensorflow代码。

1. GAN诞生背后的故事:

学术界流传,GAN创始人 Ian Goodfellow 在酒吧微醉后与同事讨论学术问题,当时灵光乍现提出了GAN初步的想法,不过当时并没有得到同事的认可,在从酒吧回去后发现女朋友已经睡了,于是自己熬夜写了代码,发现还真有效果,于是经过一番研究后,GAN就诞生了,一篇开山之作。附上一张大神照片。

 Ian goodfellow

2. GAN的原理:

GAN的主要灵感来源于博弈论中零和博弈的思想,应用到深度学习神经网络上来说,就是通过生成网络G(Generator)和判别网络D(Discriminator)不断博弈,进而使G学习到数据的分布,如果用到图片生成上,则训练完成后,G可以从一段随机数中生成逼真的图像。G, D的主要功能是:

●  G是一个生成式的网络,它接收一个随机的噪声z(随机数),通过这个噪声生成图像 

●  D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片

训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量辨别出G生成的假图像和真实的图像。这样,G和D构成了一个动态的“博弈过程”,最终的平衡点即纳什均衡点.

3. GAN的特点:

●  相比较传统的模型,他存在两个不同的网络,而不是单一的网络,并且训练方式采用的是对抗训练方式

●  GAN中G的梯度更新信息来自判别器D,而不是来自数据样本

4. GAN 的优点:

(以下部分摘自ian goodfellow 在Quora的问答)

●  GAN是一种生成式模型,相比较其他生成模型(玻尔兹曼机和GSNs)只用到了反向传播,而不需要复杂的马尔科夫链

●  相比其他所有模型, GAN可以产生更加清晰,真实的样本

●  GAN采用的是一种无监督的学习方式训练,可以被广泛用在无监督学习和半监督学习领域

●  相比于变分自编码器, GANs没有引入任何决定性偏置( deterministic bias),变分方法引入决定性偏置,因为他们优化对数似然的下界,而不是似然度本身,这看起来导致了VAEs生成的实例比GANs更模糊

●  相比VAE, GANs没有变分下界,如果鉴别器训练良好,那么生成器可以完美的学习到训练样本的分布.换句话说,GANs是渐进一致的,但是VAE是有偏差的

●  GAN应用到一些场景上,比如图片风格迁移,超分辨率,图像补全,去噪,避免了损失函数设计的困难,不管三七二十一,只要有一个的基准,直接上判别器,剩下的就交给对抗训练了。

5. GAN的缺点:

●  训练GAN需要达到纳什均衡,有时候可以用梯度下降法做到,有时候做不到.我们还没有找到很好的达到纳什均衡的方法,所以训练GAN相比VAE或者PixelRNN是不稳定的,但我认为在实践中它还是比训练玻尔兹曼机稳定的多

●  GAN不适合处理离散形式的数据,比如文本

●  GAN存在训练不稳定、梯度消失、模式崩溃的问题(目前已解决)

模式崩溃(model collapse)原因

一般出现在GAN训练不稳定的时候,具体表现为生成出来的结果非常差,但是即使加长训练时间后也无法得到很好的改善。

具体原因可以解释如下:GAN采用的是对抗训练的方式,G的梯度更新来自D,所以G生成的好不好,得看D怎么说。具体就是G生成一个样本,交给D去评判,D会输出生成的假样本是真样本的概率(0-1),相当于告诉G生成的样本有多大的真实性,G就会根据这个反馈不断改善自己,提高D输出的概率值。但是如果某一次G生成的样本可能并不是很真实,但是D给出了正确的评价,或者是G生成的结果中一些特征得到了D的认可,这时候G就会认为我输出的正确的,那么接下来我就这样输出肯定D还会给出比较高的评价,实际上G生成的并不怎么样,但是他们两个就这样自我欺骗下去了,导致最终生成结果缺失一些信息,特征不全。

关于梯度消失的问题可以参考郑华滨的令人拍案叫绝的wassertein GAN,里面给出了详细的解释,不过多重复。

局部极小值点

鞍点

为什么GAN中的优化器不常用SGD

1. SGD容易震荡,容易使GAN训练不稳定,

2. GAN的目的是在高维非凸的参数空间中找到纳什均衡点,GAN的纳什均衡点是一个鞍点,但是SGD只会找到局部极小值,因为SGD解决的是一个寻找最小值的问题,GAN是一个博弈问题。

为什么GAN不适合处理文本数据

1. 文本数据相比较图片数据来说是离散的,因为对于文本来说,通常需要将一个词映射为一个高维的向量,最终预测的输出是一个one-hot向量,假设softmax的输出是(0.2, 0.3, 0.1,0.2,0.15,0.05)那么变为onehot是(0,1,0,0,0,0),如果softmax输出是(0.2, 0.25, 0.2, 0.1,0.15,0.1 ),one-hot仍然是(0, 1, 0, 0, 0, 0),所以对于生成器来说,G输出了不同的结果但是D给出了同样的判别结果,并不能将梯度更新信息很好的传递到G中去,所以D最终输出的判别没有意义。

2. 另外就是GAN的损失函数是JS散度,JS散度不适合衡量不想交分布之间的距离。

(WGAN虽然使用wassertein距离代替了JS散度,但是在生成文本上能力还是有限,GAN在生成文本上的应用有seq-GAN,和强化学习结合的产物)

训练GAN的一些技巧

1. 输入规范化到(-1,1)之间,最后一层的激活函数使用tanh(BEGAN除外)

2. 使用wassertein GAN的损失函数,

3. 如果有标签数据的话,尽量使用标签,也有人提出使用反转标签效果很好,另外使用标签平滑,单边标签平滑或者双边标签平滑

4. 使用mini-batch norm, 如果不用batch norm 可以使用instance norm 或者weight norm

5. 避免使用RELU和pooling层,减少稀疏梯度的可能性,可以使用leakrelu激活函数

6. 优化器尽量选择ADAM,学习率不要设置太大,初始1e-4可以参考,另外可以随着训练进行不断缩小学习率,

7. 给D的网络层增加高斯噪声,相当于是一种正则

GAN的变种

自从GAN出世后,得到了广泛研究,先后几百篇不同的GANpaper横空出世,国外有大神整理了一个GAN zoo(GAN动物园),链接如下,感兴趣的可以参考一下:

https://github.com/hindupuravinash/the-gan-zoo

GitHub上已经1200+star了,顺便附上一张GAN的成果图,可见GAN的研究火热程度:

GAN的广泛应用

1. GAN本身是一种生成式模型,所以在数据生成上用的是最普遍的,最常见的是图片生成,常用的有DCGAN WGAN,BEGAN,个人感觉在BEGAN的效果最好而且最简单。

2. GAN本身也是一种无监督学习的典范,因此它在无监督学习,半监督学习领域都有广泛的应用,比较好的论文有

Improved Techniques for Training GANs

Bayesian GAN(最新)

Good Semi-supervised Learning

3. 不仅在生成领域,GAN在分类领域也占有一席之地,简单来说,就是替换判别器为一个分类器,做多分类任务,而生成器仍然做生成任务,辅助分类器训练。

4. GAN可以和强化学习结合,目前一个比较好的例子就是seq-GAN

5. 目前比较有意思的应用就是GAN用在图像风格迁移,图像降噪修复,图像超分辨率了,都有比较好的结果,详见pix-2-pix GAN 和cycle GAN。但是GAN目前在视频生成上和预测上还不是很好。

6. 目前也有研究者将GAN用在对抗性攻击上,具体就是训练GAN生成对抗文本,有针对或者无针对的欺骗分类器或者检测系统等等,但是目前没有见到很典范的文章。

3. GAN的改进

1.DCGAN


【Paper】 :

            http://arxiv.org/abs/1511.06434

【github】 :

            https://github.com/Newmu/dcgan_code  theano

            https://github.com/carpedm20/DCGAN-tensorflow  tensorflow

            https://github.com/jacobgil/keras-dcgan    keras

            https://github.com/soumith/dcgan.torch  torch

DCGAN是继GAN之后比较好的改进,其主要的改进主要是在网络结构上,到目前为止,DCGAN的网络结构还是被广泛的使用,DCGAN极大的提升了GAN训练的稳定性以及生成结果质量。

论文的主要贡献是:

◆  为GAN的训练提供了一个很好的网络拓扑结构。

◆  表明生成的特征具有向量的计算特性。

640?wx_fmt=png&wxfrom=5&wx_lazy=1
DCGAN的生成器网络结构如上图所示,相较原始的GAN,DCGAN几乎完全使用了卷积层代替全链接层,判别器几乎是和生成器对称的,从上图中我们可以看到,整个网络没有pooling层和上采样层的存在,实际上是使用了带步长(fractional-strided)的卷积代替了上采样,以增加训练的稳定性。

DCGAN能改进GAN训练稳定的原因主要有:

◆  使用步长卷积代替上采样层,卷积在提取图像特征上具有很好的作用,并且使用卷积代替全连接层。

◆  生成器G和判别器D中几乎每一层都使用batchnorm层,将特征层的输出归一化到一起,加速了训练,提升了训练的稳定性。(生成器的最后一层和判别器的第一层不加batchnorm)

◆  在判别器中使用leakrelu激活函数,而不是RELU,防止梯度稀疏,生成器中仍然采用relu,但是输出层采用tanh

◆  使用adam优化器训练,并且学习率最好是0.0002,(我也试过其他学习率,不得不说0.0002是表现最好的了)

DCGAN结果图:

矢量计算:

0?wx_fmt=png
LSUN数据集上的结果

0?wx_fmt=png

DCGAN虽然有很好的架构,但是对GAN训练稳定性来说是治标不治本,没有从根本上解决问题,而且训练的时候仍需要小心的平衡G,D的训练进程,往往是训练一个多次,训练另一个一次。

2.WGAN

【paper】: 

            https://arxiv.org/abs/1701.07875

【GitHub】:

            https://github.com/hwalsuklee/tensorflow-generative-model-collections

              https://github.com/Zardinality/WGAN-tensorflow


与DCGAN不同,WGAN主要从损失函数的角度对GAN做了改进,损失函数改进之后的WGAN即使在全链接层上也能得到很好的表现结果,WGAN对GAN的改进主要有:

◆  判别器最后一层去掉sigmoid

◆  生成器和判别器的loss不取log

◆  对更新后的权重强制截断到一定范围内,比如[-0.01,0.01],以满足论文中提到的lipschitz连续性条件

◆  论文中也推荐使用SGD, RMSprop等优化器,不要基于使用动量的优化算法,比如adam,但是就我目前来说,训练GAN时,我还是adam用的多一些。

从上面看来,WGAN好像在代码上很好实现,基本上在原始GAN的代码上不用更改什么,但是它的作用是巨大的

◆  WGAN理论上给出了GAN训练不稳定的原因,即交叉熵(JS散度)不适合衡量具有不相交部分的分布之间的距离,转而使用wassertein距离去衡量生成数据分布和真实数据分布之间的距离,理论上解决了训练不稳定的问题。

◆  解决了模式崩溃的(collapse mode)问题,生成结果多样性更丰富。

◆  对GAN的训练提供了一个指标,此指标数值越小,表示GAN训练的越差,反之越好。可以说之前训练GAN完全就和买彩票一样,训练好了算你中奖,没中奖也不要气馁,多买几注吧。

有关GAN和WGAN的解释,可以参考链接:https://zhuanlan.zhihu.com/p/25071913

总的来说,GAN中交叉熵(JS散度)不适合衡量生成数据分布和真实数据分布的距离,如果通过优化JS散度训练GAN会导致找不到正确的优化目标,所以,WGAN提出使用wassertein距离作为优化方式训练GAN,但是数学上和真正代码实现上还是有区别的,使用Wasserteion距离需要满足很强的连续性条件—lipschitz连续性,为了满足这个条件,作者使用了将权重限制到一个范围的方式强制满足lipschitz连续性,但是这也造成了隐患,接下来会详细说。另外说实话,虽然理论证明很漂亮,但是实际上训练起来,以及生成结果并没有期待的那么好。

注:Lipschitz限制是在样本空间中,要求判别器函数D(x)梯度值不大于一个有限的常数K,通过权重值限制的方式保证了权重参数的有界性,间接限制了其梯度信息。


3.WGAN-GP (improved wgan)

【paper】:

            https://arxiv.org/abs/1704.00028

【GitHub】:

        https://link.zhihu.com/?target=https%3A//github.com/igul222/improved_wgan_training

            https://github.com/caogang/wgan-gp

WGAN-GP是WGAN之后的改进版,主要还是改进了连续性限制的条件,因为,作者也发现将权重剪切到一定范围之后,比如剪切到[-0.01,+0.01]后,发生了这样的情况,如下图左边表示。

0?wx_fmt=png
发现大多数的权重都在-0.01 和0.01上,这就意味了网络的大部分权重只有两个可能数,对于深度神经网络来说不能充分发挥深度神经网络的拟合能力,简直是极大的浪费。并且,也发现强制剪切权重容易导致梯度消失或者梯度爆炸,梯度消失很好理解,就是权重得不到更新信息,梯度爆炸就是更新过猛了,权重每次更新都变化很大,很容易导致训练不稳定。梯度消失与梯度爆炸原因均在于剪切范围的选择,选择过小的话会导致梯度消失,如果设得稍微大了一点,每经过一层网络,梯度变大一点点,多层之后就会发生梯度爆炸 。为了解决这个问题,并且找一个合适的方式满足lipschitz连续性条件,作者提出了使用梯度惩罚(gradient penalty)的方式以满足此连续性条件,其结果如上图右边所示。

 梯度惩罚就是既然Lipschitz限制是要求判别器的梯度不超过K,那么可以通过建立一个损失函数来满足这个要求,即先求出判别器的梯度d(D(x)),然后建立与K之间的二范数就可以实现一个简单的损失函数设计。但是注意到D的梯度的数值空间是整个样本空间,对于图片(既包含了真实数据集也包含了生成出的图片集)这样的数据集来说,维度及其高,显然是及其不适合的计算的。作者提出没必要对整个数据集(真的和生成的)做采样,只要从每一批次的样本中采样就可以了,比如可以产生一个随机数,在生成数据和真实数据上做一个插值

0?wx_fmt=png
于是就算解决了在整个样本空间上采样的麻烦。

所以WGAN-GP的贡献是:

◆  提出了一种新的lipschitz连续性限制手法—梯度惩罚,解决了训练梯度消失梯度爆炸的问题。

◆  比标准WGAN拥有更快的收敛速度,并能生成更高质量的样本

◆  提供稳定的GAN训练方式,几乎不需要怎么调参,成功训练多种针对图片生成和语言模型的GAN架构

但是论文提出,由于是对每个batch中的每一个样本都做了梯度惩罚(随机数的维度是(batchsize,1)),因此判别器中不能使用batch norm,但是可以使用其他的normalization方法,比如Layer Normalization、Weight Normalization和Instance Normalization,论文中使用了Layer Normalization,weight normalization效果也是可以的。为了比较,还是祭出了下面这张图,可以发现WGAN-GP完爆其他GAN:

0?wx_fmt=png
4.LSGAN

最小二乘GAN

全称是Least Squares Generative Adversarial Networks

【paper】

            https://arxiv.org/abs/1611.04076

【github】

            https://github.com/hwalsuklee/tensorflow-generative-model-collections

            https://github.com/guojunq/lsgan

LSGAN原理:

其实原理部分可以一句话概括,即使用了最小二乘损失函数代替了GAN的损失函数。

但是就这样的改变,缓解了GAN训练不稳定和生成图像质量差多样性不足的问题。

事实上,作者认为使用JS散度并不能拉近真实分布和生成分布之间的距离,使用最小二乘可以将图像的分布尽可能的接近决策边界,其损失函数定义如下:

0?wx_fmt=png

其中作者设置a=c=1,b=0

论文里还是给了一些数学推导与证明,感兴趣的可以去看看

生成结果展示:

0?wx_fmt=png

5.BEGAN: (不是EBGAN)

BEGAN全称是Boundary Equilibrium GANs

【paper】:

            https://arxiv.org/abs/1703.10717

【GitHub】:

            https://github.com/carpedm20/BEGAN-tensorflow

            https://github.com/Heumi/BEGAN-tensorflow

            https://github.com/carpedm20/BEGAN-pytorch

(详细的BEGAN解读可以参考我的博客:

http://blog.csdn.net/qq_25737169/article/details/77575617?locationNum=1&fps=1)

BEGAN的主要贡献:

◆  提出了一种新的简单强大GAN,使用标准的训练方式,不加训练trick也能很快且稳定的收敛

◆  对于GAN中G,D的能力的平衡提出了一种均衡的概念(GAN的理论基础就是goodfellow理论上证明了GAN均衡点的存在,但是一直没有一个准确的衡量指标说明GAN的均衡程度)

◆  提出了一种收敛程度的估计,这个机制只在WGAN中出现过。作者在论文中也提到,他们的灵感来自于WGAN,在此之前只有wgan做到了

◆  提出了一种收敛程度的估计,这个机制只在WGAN中出现过。作者在论文中也提到,他们的灵感来自于WGAN

先说说BEGAN的主要原理,BEGAN和其他GAN不一样,这里的D使用的是auto-encoder结构,就是下面这种,D的输入是图片,输出是经过编码解码后的图片:

0?wx_fmt=png

往的GAN以及其变种都是希望生成器生成的数据分布尽可能的接近真实数据的分布,当生成数据分布等同于真实数据分布时,我们就确定生成器G经过训练可以生成和真实数据分布相同的样本,即获得了生成足以以假乱真数据的能力,所以从这一点出发,研究者们设计了各种损失函数去令G的生成数据分布尽可能接近真实数据分布。BEGAN代替了这种估计概率分布方法,它不直接去估计生成分布Pg与真实分布Px的差距,进而设计合理的损失函数拉近他们之间的距离,而是估计分布的误差之间的距离,作者认为只要分布的的误差分布相近的话,也可以认为这些分布是相近的。即如果我们认为两个人非常相似,又发现这两人中的第二个人和第三个人很相似,那么我们就完全可以说第一个人和第三个人长的很像。

在BEGAN中,第一个人相当于训练的数据x,第二个人相当于D对x编码解码后的图像D(x),第三个人相当于D以G的生成为输入的结果D(g(z)),所以,如果||D(x)-x|| - || D(x)- D(g(z)) || 不断趋近于0,那么随着训练,D(x)会不断接近x,那么D(g(z)) 接近于D(x),岂不是就意味着 g(z) 的数据分布和x分布几乎一样了,那么就说明G学到了生成数据的能力。于是乎,假设图片足够大,像素很多。但是问题来了,如果||D(x)-x|| - || D(x)- D(g(z)) ||刚好等于0,这时候,D(x)和x可能还差的很远呢,那不就什么也学不到了D(x)-x是一个图片,假设图片上的每一个像素都满足独立同分布条件,根据中心极限定理,像素的误差近似满足正太分布,假设期望是m1,方差是μ1,同理D(x)- D(g(z)),还有m2, μ1这时候如果我们再用wassertein距离衡量m1与m2的距离,

0?wx_fmt=png

再满足下面这个条件下,

0?wx_fmt=png

0?wx_fmt=png

即他们成正比,这时候连lipschitz连续性条件也不需要了,

但是有一个问题,当m1和m2很接近是,条件1是趋于无穷的,不可能再忽略,于是,boundary(限制)就来了,

0?wx_fmt=png

0?wx_fmt=png

设置一个位于[0~1]之间的数λ,强制将m1和m2划分开界限,具体的损失函数如下:

0?wx_fmt=png

BEGAN的训练结果:不同的γ可以在图片的质量和生成多样性之间做选择。
0?wx_fmt=png

所以说BEGAN效果还是很强的,当然先不考虑最新nvidia的渐进训练GAN,这篇之后会介绍。

这里直介绍了一些对GAN在训练和生成上改进的工作,具体还有很多很多很多很多没有介绍到,这里只是挑选了一些典型的,用的比较多的来介绍一下。感兴趣的可以去看看https://github.com/hindupuravinash/the-gan-zoo

GAN动物园,上百个GAN等着被翻牌。

没什么不同

哪么重点来了,那么多GAN改进版,到底哪一个效果更好呢,最新的Google一项研究表明,GAN、WGAN、WGAN GP、LS GAN、DRAGAN、BEGAN啥的,都差不多,差不多,不多,为什么都差不多呢?因为天黑得时候他们都仰望同一片星空,忽然想起来了曲婉婷的一首歌—《没有什么不同》

Google研究原文请见:https://arxiv.org/abs/1711.10337

在此项研究中,Google此项研究中使用了minimax损失函数和用non-saturating损失函数的GAN,分别简称为MM GAN和NS GAN,对比了WGAN、WGAN GP、LS GAN、DRAGAN、BEGAN,除了DRAGAN上文都做了介绍,另外还对比的有VAE(变分自编码器)。

对比细节:

为了很好的说明问题,研究者们两个指标来对比了实验结果,分别是FID和精度(precision、)、召回率(recall)以及两者的平均数F1。

其中FID(Fréchet distance(弗雷歇距离) )是法国数学家Maurice René Fréchet在1906年提出的一种路径空间相似形描述,直观来说是狗绳距离:主人走路径A,狗走路径B,各自走完这两条路径过程中所需要的最短狗绳长度,如下图所示,所以说,FID与生成图像的质量呈负相关。

0?wx_fmt=png

为了更容易说明对比的结果,研究者们自制了一个类似mnist的数据集,数据集中都是灰度图,图像中的目标是不同形状的三角形。

0?wx_fmt=png

具体比较细节就不详细展开了,这里做一个结论总结

在图像生成方面,发现了VAE生成结果最差,其他的GAN等等生成质量都差不多,也很好理解其实,个人认为VAE更适合于对数据进行重构,对数据降维或者生成要求不是很高的数据上很方便(填补缺失数据),但是生成数据上还是GAN更胜一筹。

最后,研究者们也在精度(precision、)、召回率(recall)以及两者的平均数F1上做了测试,测试细节请看论文,也并没有发现其他GAN比原始GAN更突出的地方。

结语:

但是个人认为,虽然得出的结论是没有明显的证据说明其他GAN比原始GAN好,但是我想说,有本事你用原始GAN生成一个2K的高清图给我看看,此时BEGAN和PG-GAN相视一笑,默默不说话。大部分情况来说,还是wgan-gp用的更多一些。生成高清图像BEGAN最简单合适。
 

参考文献:

https://www.zhihu.com/question/56171002/answer/148593584

http://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/

https://github.com/soumith/ganhacks

https://github.com/hindupuravinash/the-gan-zoo

https://zhuanlan.zhihu.com/p/25071913

https://mp.weixin.qq.com/s?__biz=MzUyMjE2MTE0Mw==&mid=2247484527&idx=1&sn=fa11374c1e34a6617d635aae8081a4bb&chksm=f9d15af7cea6d3e1f6baef3be367aef2bb1dd2c2a6c0a3d3604c491f0fe4096a451813a29e15&scene=21#wechat_redirect

https://blog.csdn.net/qq_25737169/article/details/78857788

猜你喜欢

转载自blog.csdn.net/u013185349/article/details/85611866
今日推荐