[Luogu P4389] 付公主的背包

版权声明:欢迎转载蒟蒻博客,但请注明出处: https://blog.csdn.net/LPA20020220/article/details/85270332

洛谷传送门

题目描述

这个背包最多可以装 1 0 5 10^5 大小的东西

付公主有 n n 种商品,她要准备出摊了

每种商品体积为 V i V_i ,都有 1 0 5 10^5

给定 m m ,对于 s [ 1 , m ] s\in [1,m] ,请你回答用这些商品恰好装 s s 体积的方案数

输入输出格式

输入格式:

第一行 n , m n,m

第二行 V 1 V n V_1\sim V_n

输出格式:

m m 行,第 i i 行代表 s = i s=i 时方案数,对 998244353 998244353 取模

输入输出样例

输入样例#1:

2 4
1 2

输出样例#1:

1
2
2
3

说明

对于30%的数据, n 3000 , m 3000 n\le 3000,m\le 3000

对于60%的数据,纯随机生成

对于100%的数据, n 100000 , m 100000 n\le 100000,m\le 100000

对于100%的数据, V i m V_i\le m

解题分析

对于一个体积为 V i V_i 的物品, 其生成函数为 1 + x V i + x 2 V i + . . . + x k V i = 1 1 x V i 1+x^{V_i}+x^{2V_i}+...+x^{kVi}=\frac{1}{1-x^{V_i}} 。那么很显然我们就是要快速求所有生成函数的积, 找到对应项的系数即可。

关键是如何快速求这个玩意。 有个很套路的做法是先把这玩意求 l n ln 加上再 e x p exp 回去。

那么开始推式子: 设 f ( x ) f(x) 为第 i i 个物品的生成函数, g ( x ) = l n ( f ( x ) ) g(x)=ln(f(x)) , 那么有:
g ( x ) = f ( x ) f ( x ) = k 1 k V i x k V i 1 1 1 x V i = ( 1 x V i ) k 1 k V i x k V i 1 = k 1 V i x k V i 1 g ( x ) = k 1 1 k x k V i g'(x)=\frac{f'(x)}{f(x)} \\ =\frac{\sum_{k\ge 1}kV_ix^{kV_i-1}}{\frac{1}{1-x^{V_i}}} \\ =(1-x^{V_i})\sum_{k\ge 1}kV_ix^{kV_i-1} \\ =\sum_{k\ge 1}V_ix^{kV_i-1} \\ g(x)=\sum_{k\ge 1}\frac{1}{k}x^{kV_i}
所以这玩意记录一下出现次数可以 O ( N l n ( N ) ) O(Nln(N)) 求。

那么剩下的就是一个 e x p exp 的板子辣!

代码如下:

#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <algorithm>
#include <cstring>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 600500
#define MOD 998244353
#define g 3
#define ginv 332748118
template <class T>
IN void in(T &x)
{
	x = 0; R char c = gc;
	for (; !isdigit(c); c = gc);
	for (;  isdigit(c); c = gc)
	x = (x << 1) + (x << 3) + c - 48;
}
IN int fpow(R int base, R int tim)
{
	int ret = 1;
	W (tim)
	{
		if (tim & 1) ret = 1ll * ret * base % MOD;
		base = 1ll * base * base % MOD, tim >>= 1;
	}
	return ret;
}
int a1[MX], a2[MX], b1[MX], b2[MX], b3[MX], b4[MX], c[MX];
int inv[MX], A[MX], rev[MX], res[MX], cnt[MX];
namespace Poly
{
	IN void NTT(int *dat, R int len, R bool typ)
	{
		for (R int i = 1; i < len; ++i) if (rev[i] > i) std::swap(dat[i], dat[rev[i]]);
		R int seg, step, bd, now, cur, base, deal, buf1, buf2;
		for (seg = 1; seg < len; seg <<= 1)
		{
			base = fpow(typ ? g : ginv, (MOD - 1) / (seg << 1)), step = seg << 1;
			for (now = 0; now < len; now += step)
			{
				deal = 1, bd = now + seg;
				for (cur = now; cur < bd; cur++, deal = 1ll * deal * base % MOD)
				{
					buf1 = dat[cur], buf2 = 1ll * dat[cur + seg] * deal % MOD;
					dat[cur] = (buf1 + buf2) % MOD, dat[cur + seg] = (buf1 - buf2 + MOD) % MOD;
				}
			}
		}
		if (typ) return; int inv = fpow(len, MOD - 2);
		for (R int i = 0; i < len; ++i) dat[i] = 1ll * inv * dat[i] % MOD;
	}
	IN void Dr(int *dat, int *dr, R int len) {for (R int i = 1; i < len; ++i) dr[i - 1] = 1ll * dat[i] * i % MOD; dr[len - 1] = 0;}
	IN void Itg(int *dat, int *itg, R int len) {for (R int i = 1; i < len; ++i) itg[i] = 1ll * dat[i - 1] * fpow(i, MOD - 2) % MOD; itg[0] = 0;}
	IN void Getinv(R int up, R int lg, int *ind, int *ans)
	{
		if (up == 1) return ans[0] = fpow(ind[0], MOD - 2), void();
		Getinv(up >> 1, lg - 1, ind, ans); int len = up << 1, half = up >> 1; lg++;
		for (R int i = 0; i < len; ++i) a1[i] = a2[i] = 0;
		for (R int i = 1; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg - 1);
		for (R int i = 0; i < half; ++i) a1[i] = ans[i];
		for (R int i = 0; i < up; ++i) a2[i] = ind[i];
		NTT(a1, len, 1), NTT(a2, len, 1);
		for (R int i = 0; i < len; ++i) a1[i] = (a1[i] * 2 % MOD - 1ll * a1[i] * a1[i] % MOD * a2[i] % MOD + MOD) % MOD;
		NTT(a1, len, 0);
		for (R int i = 0; i < up; ++i) ans[i] = a1[i];
	}
	IN void Getln(R int up, R int lg, int *dat, int *ans)
	{
		Dr(dat, b1, up); Getinv(up, lg, dat, b2);
		int len = up << 1; lg++;
		for (R int i = 0; i < len; ++i) a1[i] = a2[i] = 0;
		for (R int i = 1; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg - 1);
		for (R int i = 0; i < up; ++i) a1[i] = b1[i], a2[i] = b2[i];
		NTT(a1, len, 1), NTT(a2, len, 1);
		for (R int i = 0; i < len; ++i) a1[i] = 1ll * a1[i] * a2[i] % MOD;
		NTT(a1, len, 0); Itg(a1, ans, up);
	}
	IN void Getexp(R int up, R int lg)
	{
		if (up == 1) return res[0] = 1, void();
		Getexp(up >> 1, lg - 1); Getln(up, lg, res, c);
		int len = up << 1, half = up >> 1; lg++;
		for (R int i = 1; i < len; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << lg - 1);
		for (R int i = 0; i < len; ++i) a1[i] = a2[i] = 0;
		for (R int i = 0; i < up; ++i) a1[i] = (A[i] - c[i] + MOD) % MOD;
		for (R int i = 0; i < half; ++i) a2[i] = res[i];
		a1[0] = (a1[0] + 1) % MOD; NTT(a1, len, 1), NTT(a2, len, 1);
		for (R int i = 0; i < len; ++i) a1[i] = 1ll * a1[i] * a2[i] % MOD;
		NTT(a1, len, 0);
		for (R int i = 0; i < up; ++i) res[i] = a1[i];
	}
}
 int main(void)
 {
	int n, m, foo; in(n), in(m); inv[0] = inv[1] = 1;
	for (R int i = 2; i <= m; ++i) inv[i] = 1ll * inv[MOD % i] * (MOD - MOD / i) % MOD;
	for (R int i = 1; i <= n; ++i) in(foo), ++cnt[foo];
	for (R int i = 1; i <= m; ++i)
	{
		if (cnt[i])
		for (R int j = 1; i * j <= m; ++j)
		(A[j * i] += 1ll * inv[j] * cnt[i] % MOD) %= MOD;
	}
	int len = 1, lg = 0;
	for (; len <= m; len <<= 1, lg++);
	Poly::Getexp(len, lg);
	for (R int i = 1; i <= m; ++i) printf("%d\n", res[i]);
 }

猜你喜欢

转载自blog.csdn.net/LPA20020220/article/details/85270332