面试攻略六(网络专题)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_28202661/article/details/81943430

说一下HTTP协议

HTTP协议是超文本传输协议,属于应用层协议,规定了客户端与服务端传输数据的格式;它是无状态的,对于前面传送过的信息没有记录;请求方式有GET,POST,HEAD,PUT,DELETE等等,最主要的get,post方法;get请求:数据会以URL的形式传输,对数据大小有一定的限制,安全性比较低 ,用于传输一些比较小,安全性要求低的数据;

post请求:数据是通过数据包的形式传输,比较安全,用于传输比较大的,对于安全性要求较高的数据;

HTTP转态码:

状态代码有三位数字组成,第一个数字定义了响应的类别,共分五种类别:

1xx:指示信息--表示请求已接收,继续处理

2xx:成功--表示请求已被成功接收、理解、接受

3xx:重定向--要完成请求必须进行更进一步的操作

4xx:客户端错误--请求有语法错误或请求无法实现

5xx:服务器端错误--服务器未能实现合法的请求

常见状态码:

 
  1. 200 OK //客户端请求成功

  2. 400 Bad Request //客户端请求有语法错误,不能被服务器所理解

  3. 401 Unauthorized //请求未经授权,这个状态代码必须和WWW-Authenticate报头域一起使用

  4. 403 Forbidden //服务器收到请求,但是拒绝提供服务

  5. 404 Not Found //请求资源不存在,eg:输入了错误的URL

  6. 500 Internal Server Error //服务器发生不可预期的错误

  7. 503 Server Unavailable //服务器当前不能处理客户端的请求,一段时间后可能恢复正常

TCP协议简述

TCP协议是面向连接的、可靠的传输层协议,规定了数据在网络中是如何传输的。

TCP的三次握手:

1.第一次握手:建立连接。客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x;然后,客户端进入SYN_SEND状态,等待服务器的确认;

2.第二次握手:服务器收到SYN报文段。服务器收到客户端的SYN报文段,需要对这个SYN报文段进行确认,设置Acknowledgment Number为x+1(Sequence Number+1);同时,自己自己还要发送SYN请求信息,将SYN位置为1,Sequence Number为y;服务器端将上述所有信息放到一个报文段(即SYN+ACK报文段)中,一并发送给客户端,此时服务器进入SYN_RECV状态;

3.第三次握手:客户端收到服务器的SYN+ACK报文段。然后将Acknowledgment Number设置为y+1,向服务器发送ACK报文段,这个报文段发送完毕以后,客户端和服务器端都进入ESTABLISHED状态,完成TCP三次握手。

四次挥手:

1.第一次分手:主机1(可以使客户端,也可以是服务器端),设置Sequence Number和Acknowledgment Number,向主机2发送一个FIN报文段;此时,主机1进入FIN_WAIT_1状态;这表示主机1没有数据要发送给主机2了;

2.第二次分手:主机2收到了主机1发送的FIN报文段,向主机1回一个ACK报文段,Acknowledgment Number为Sequence Number加1;主机1进入FIN_WAIT_2状态;主机2告诉主机1,我也没有数据要发送了,可以进行关闭连接了;

3.第三次分手:主机2向主机1发送FIN报文段,请求关闭连接,同时主机2进入CLOSE_WAIT状态;

4.第四次分手:主机1收到主机2发送的FIN报文段,向主机2发送ACK报文段,然后主机1进入TIME_WAIT状态;主机2收到主机1的ACK报文段以后,就关闭连接;此时,主机1等待2MSL后依然没有收到回复,则证明Server端已正常关闭,那好,主机1也可以关闭连接了。

TCP三次握手连接的建立过程:

TCP四次挥手的释放过程:

TCP与UDP的区别

1.基于连接与无连接
2.TCP要求系统资源较多,UDP较少; 
3.UDP程序结构较简单 
4.流模式(TCP)与数据报模式(UDP); 
5.TCP保证数据正确性,UDP可能丢包 
6.TCP保证数据顺序,UDP不保证

流量控制和拥塞控制

拥塞控制
网络拥塞现象是指到达通信子网中某一部分的分组数量过多,使得该部分网络来不及处理,以致引起这部分乃至整个网络性能下降的现象,严重时甚至会导致网络通信业务陷入停顿,即出现死锁现象。拥塞控制是处理网络拥塞现象的一种机制。
流量控制
数据的传送与接收过程当中很可能出现收方来不及接收的情况,这时就需要对发方进行控制,以免数据丢失。

多线程如何同步

windows

线程同步有四种方式:临界区、内核对象、互斥量、信号量

Linux

线程同步有最常用的是:互斥锁、条件变量和信号量。

进程间通讯的方式有哪些,各有什么优缺点

进程间通信

Linux 进程间通信(IPC)以下以几部分发展而来:
早期UNIX进程间通信、基于System V进程间通信、基于Socket进程间通信和POSIX进程间通信。
UNIX进程间通信方式包括:管道、FIFO、信号。
System V进程间通信方式包括:System V消息队列、System V信号灯、System V共享内存、
POSIX进程间通信包括:posix消息队列、posix信号灯、posix共享内存。
现在linux使用的进程间通信方式:
(1)管道(pipe)和有名管道(FIFO)
(2)信号(signal)
(3)消息队列
(4)共享内存
(5)信号量
(6)套接字(socket)

connect方法会阻塞,请问有什么方法可以避免其长时间阻塞?

答:最通常的方法最有效的是加定时器;也可以采用非阻塞模式。

  网络中,如果客户端突然掉线或者重启,服务器端怎么样才能立刻知道?


答:若客户端掉线或者重新启动,服务器端会收到复位信号,每一种tcp/ip得实现不一样,控制机制也不一样。

在子网210.27.48.21/30种有多少个可用地址?分别是什么?


答:
30表示的是网络号(network number)是30位,剩下2位中11是广播(broadcast)地址,00是multicast地址,只有01和10可以作为host address。

详:
210.27.48.21/30代表的子网的网络号是30位,即网络号是210.27.48.21 & 255.255.255.251=210.27.48.20,此子网的地址空间是2位,即可以有4个地址:210.27.48.20, 210.27.48.21, 210.27.48.22, 210.27.48.23。第一个地址的主机号(host number/id)是0,而主机号0代表的是multicast地址。最后一个地址的最后两位是11,主机号每一位都为1代表的是广播(broadcast)地址。所以只有中间两个地址可以给host使用。其实那个问题本身不准确,广播或multicast地止也是可以使用的地址,所以回答4也应该正确,当然问的人也可能是想要你回答2。我个人觉得最好的回答是一个广播地址,一个multicast地址,2个unicast地址。
 

TTL是什么?有什么用处,通常那些工具会用到它?(ping? traceroute? ifconfig? netstat?)


答:
简:TTL是Time To Live,一般是hup count,每经过一个路由就会被减去一,如果它变成0,包会被丢掉。它的主要目的是防止包在有回路的网络上死转,浪费网络资源。ping和traceroute用到它。

详:TTL是Time To Live,目前是hup count,当包每经过一个路由器它就会被减去一,如果它变成0,路由器就会把包丢掉。IP网络往往带有环(loop),比如子网A和子网B有两个路由器相连,它就是一个loop。TTL的主要目的是防止包在有回路的网络上死转,因为包的TTL最终后变成0而使得此包从网上消失(此时往往路由器会送一个ICMP包回来,traceroute就是根据这个做的)。ping会送包出去,所以里面有它,但是ping不一定非要不可它。traceroute则是完全因为有它才能成的。ifconfig是用来配置网卡的,netstat -rn 是用来列路由表的,所以都用不着它

路由表示做什么用的?在linux环境中怎么来配置一条默认路由?
答:


简:路由表是用来决定如何将包从一个子网传送到另一个子网的,换局话说就是用来决定从一个网卡接收到的包应该送的哪一张网卡上的。在Linux上可以用“route add default gw <默认路由器IP>”来配置一条默认路由。

详:路由表是用来决定如何将包从一个子网传送到另一个子网的,换局话说就是用来决定从一个网卡接收到的包应该送的哪一张网卡上的。路由表的每一行至少有目标网络号、netmask、到这个子网应该使用的网卡。当路由器从一个网卡接收到一个包时,它扫描路由表的每一行,用里面的netmask和包里的目标IP地址做并逻辑运算(&)找出目标网络号,如果此网络号和这一行里的网络号相同就将这条路由保留下来做为备用路由,如果已经有备用路由了就在这两条路由里将网络号最长的留下来,另一条丢掉,如此接着扫描下一行直到结束。如果扫描结束任没有找到任何路由,就用默认路由。确定路由后,直接将包送到对应的网卡上去。在具体的实现中,路由表可能包含更多的信息为选路由算法的细节所用。题外话:路由算法其实效率很差,而且不scalable,解决办法是使用IP交换机,比如MPLS。
在Linux上可以用“route add default gw <默认路由器IP>”来配置一条默认路由。
 

在网络中有两台主机A和B,并通过路由器和其他交换设备连接起来,已经确认物理连接正确无误,怎么来测试这两台机器是否连通?如果不通,怎么来判断故障点?怎么排除故障?


答:测试这两台机器是否连通:从一台机器ping另一台机器
     如果ping不通,用traceroute可以确定是哪个路由器不能连通,然后再找问题是在交换设备/hup/cable等。

网络编程中设计并发服务器,使用多进程 与 多线程 ,请问有什么区别? 


答案一:
1,进程:子进程是父进程的复制品。子进程获得父进程数据空间、堆和栈的复制品。
2,线程:相对与进程而言,线程是一个更加接近与执行体的概念,它可以与同进程的其他线程共享数据,但拥有自己的栈空间,拥有独立的执行序列。
两者都可以提高程序的并发度,提高程序运行效率和响应时间。
线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源管理和保护;而进程正相反。同时,线程适合于在SMP机器上运行,而进程则可以跨机器迁移。

答案二:
根本区别就一点:用多进程每个进程有自己的地址空间(address space),线程则共享地址空间。所有其它区别都是由此而来的:
1。速度:线程产生的速度快,线程间的通讯快、切换快等,因为他们在同一个地址空间内。
2。资源利用率:线程的资源利用率比较好也是因为他们在同一个地址空间内。
3。同步问题:线程使用公共变量/内存时需要使用同步机制还是因为他们在同一个地址空间内。
等等

网络编程的一般步骤

对于TCP连接:

1.服务器端1)创建套接字create;2)绑定端口号bind;3)监听连接listen;4)接受连接请求accept,并返回新的套接字;5)用新返回的套接字recv/send;6)关闭套接字。

2.客户端1)创建套接字create; 2)发起建立连接请求connect; 3)发送/接收数据send/recv;4)关闭套接字。

TCP总结:

Server端:create – bind – listen–  accept–  recv/send– close

Client端:create——- conncet——send/recv——close.

对于UDP连接:

1.服务器端:1)创建套接字create;2)绑定端口号bind;3)接收/发送消息recvfrom/sendto;4)关闭套接字。

2.客户端:1)创建套接字create;2)发送/接收消息sendto/recvfrom;3)关闭套接字.

UDP总结:

Server端:create—-bind —-recvfrom/sendto—-close

Client端:create—-  sendto/recvfrom—-close.

TCP的重发机制是怎么实现的?

       1.滑动窗口机制,确立收发的边界,能让发送方知道已经发送了多少(已确认)、尚未确认的字节数、尚待发送的字节数;让接收方知道(已经确认收到的字节数)。

       2.选择重传,用于对传输出错的序列进行重传。

TCP和UDP的区别?

       1)TCP面向连接(三次握手机制),通信前需要先建立连接;UDP面向无连接,通信前不需要建立连接;

       2)TCP保障可靠传输(按序、无差错、不丢失、不重复);UDP不保障可靠传输,使用最大努力交付;

       3)TCP面向字节流的传输,UDP面向数据报的传输。

   TCP—传输控制协议,提供的是面向连接、可靠的字节流服务。当客户和服务器彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能传输数据。TCP提供超时重发,丢弃重复数据,检验数据,流量控制等功能,保证数据能从一端传到另一端。
UDP—用户数据报协议,是一个简单的面向数据报的运输层协议。UDP不提供可靠性,它只是把应用程序传给IP层的数据报发送出去,但是并不能保证它们能到达目的地。由于UDP在传输数据报前不用在客户和服务器之间建立一个连接,且没有超时重发等机制,故而传输速度很快

TCP为什么不是两次连接?而是三次握手?

如果A与B两个进程通信,如果仅是两次连接。可能出现的一种情况就是:A发送完请报文以后,由于网络情况不好,出现了网络拥塞,即B延时很长时间后收到报文,即此时A将此报文认定为失效的报文。B收到报文后,会向A发起连接。此时两次握手完毕,B会认为已经建立了连接可以通信,B会一直等到A发送的连接请求,而A对失效的报文回复自然不会处理。依次会陷入B忙等的僵局,造成资源的浪费。

网络编程时的同步、异步、阻塞、非阻塞?

同步:函数调用在没得到结果之前,没有调用结果,不返回任何结果。
异步:函数调用在没得到结果之前,没有调用结果,返回状态信息。
阻塞:函数调用在没得到结果之前,当前线程挂起。得到结果后才返回。
非阻塞:函数调用在没得到结果之前,当前线程不会挂起,立即返回结果。

Java如何实现无阻塞方式的Socket编程?

NIO有效解决了多线程服务器存在的线程开销问题。

在NIO中使用多线程主要目的不是为了应对每个客户端请求而分配独立的服务线程,

而是通过多线程充分利用多个CPU的处理能力和处理中的等待时间,达到提高服务能力的目的。

java中有几种类型的流?JDK为每种类型的流提供了一些抽象类以供继承,请说出他们分别是哪些类?

JDK提供的流继承了四大类:

InputStream(字节输入流),OutputStream(字节输出流),Reader(字符输入流),Writer(字符输出流)。

按流向分类:

输入流: 程序可以从中读取数据的流。
输出流: 程序能向其中写入数据的流。

按数据传输单位分类:

字节流:以字节(8位二进制)为单位进行处理。主要用于读写诸如图像或声音的二进制数据。
字符流:以字符(16位二进制)为单位进行处理。
都是通过字节流的方式实现的。字符流是对字节流进行了封装,方便操作。在最底层,所有的输入输出都是字节形式的。
后缀是Stream是字节流,而后缀是Reader,Writer是字符流。

按功能分类:

节点流:从特定的地方读写的流类,如磁盘或者一块内存区域。
过滤流:使用节点流作为输入或输出。过滤流是使用一个已经存在的输入流或者输出流连接创建的。

用JAVA SOCKET 编程,读服务器几个 字符,再写入本地显示。

客户端向服务器端发送连接请求后,就被动地等待服务器的响应。

典型的TCP客户端要经过下面三步操作:

1、创建一个Socket实例:构造函数向指定的远程主机和端口建立一个TCP连接;
2、通过套接字的I/O流与服务端通信;
3、使用Socket类的close方法关闭连接。

 

服务端的工作是建立一个通信终端,并被动地等待客户端的连接。

典型的TCP服务端执行如下两步操作:

1、创建一个ServerSocket实例并指定本地端口,用来监听客户端在该端口发送的TCP连接请求;
2、重复执行:
1)调用ServerSocket的accept()方法以获取客户端连接,并通过其返回值创建一个Socket实例;
2)为返回的Socket实例开启新的线程,并使用返回的Socket实例的I/O流与客户端通信;
3)通信完成后,使用Socket类的close()方法关闭该客户端的套接字连接。

猜你喜欢

转载自blog.csdn.net/qq_28202661/article/details/81943430
今日推荐