看完这篇文章,你已经入门Python了!

简介

Python 是一种高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。Python 由 Guido van Rossum 于 1989 年底在荷兰国家数学和计算机科学研究所发明,第一个公开发行版发行于 1991 年。

当然在学习Python的道路上肯定会困难,没有好的学习资料,怎么去学习呢?

所以小编准备了一份零基础入门Python的学习资料。进群:943752371即可领取!

特点

  • 易于学习 :Python 有相对较少的关键字,结构简单,和一个明确定义的语法,学习起来更加简单。
  • 易于阅读 :Python 代码定义的更清晰。
  • 易于维护 :Python 的成功在于它的源代码是相当容易维护的。
  • 一个广泛的标准库 :Python 的最大的优势之一是丰富的库,跨平台的,在 UNIX,Windows 和 macOS 兼容很好。
  • 互动模式 :互动模式的支持,您可以从终端输入执行代码并获得结果的语言,互动的测试和调试代码片断。
  • 可移植 :基于其开放源代码的特性,Python 已经被移植(也就是使其工作)到许多平台。
  • 可扩展 :如果你需要一段运行很快的关键代码,或者是想要编写一些不愿开放的算法,你可以使用 C 或 C++ 完成那部分程序,然后从你的 Python 程序中调用。
  • 数据库 :Python 提供所有主要的商业数据库的接口。
  • GUI 编程 :Python 支持 GUI 可以创建和移植到许多系统调用。
  • 可嵌入 :你可以将 Python 嵌入到 C/C++ 程序,让你的程序的用户获得"脚本化"的能力。
  • 面向对象 :Python 是强面向对象的语言,程序中任何内容统称为对象,包括数字、字符串、函数等。

基础语法

运行 Python

交互式解释器

在命令行窗口执行 python 后,进入 Python 的交互式解释器。 exit() 或 Ctrl + D 组合键退出交互式解释器。

命令行脚本

在命令行窗口执行 python script-file.py ,以执行 Python 脚本文件。

指定解释器

如果在 Python 脚本文件首行输入 #!/usr/bin/env python ,那么可以在命令行窗口中执行 /path/to/script-file.py 以执行该脚本文件。

注:该方法不支持 Windows 环境。

编码

默认情况下,3.x 源码文件都是 UTF-8 编码,字符串都是 Unicode 字符。也可以手动指定文件编码:

 
# -*- coding: utf-8 -*- 

或者

 
# encoding: utf-8 

注意: 该行标注必须位于文件第一行

标识符

 
_ 

注:从 3.x 开始,非 ASCII 标识符也是允许的,但不建议。

保留字

保留字即关键字,我们不能把它们用作任何标识符名称。Python 的标准库提供了一个 keyword 模块,可以输出当前版本的所有关键字:

 
>>> import keyword >>> keyword.kwlist ['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield'] 

注释

单行注释采用 # ,多行注释采用 ''' 或 """ 。

 
# 这是单行注释 ''' 这是多行注释 这是多行注释 ''' """ 这也是多行注释 这也是多行注释 """ 

行与缩进

Python 最具特色的就是使用缩进来表示代码块,不需要使用大括号 {} 。

缩进的空格数是可变的,但是同一个代码块的语句必须包含相同的缩进空格数。缩进不一致,会导致运行错误。

多行语句

Python 通常是一行写完一条语句,但如果语句很长,我们可以使用反斜杠 \ 来实现多行语句。

 
total = item_one + \ item_two + \ item_three 

在 [] , {} , 或 () 中的多行语句,不需要使用反斜杠 \ 。

空行

函数之间或类的方法之间用空行分隔,表示一段新的代码的开始。类和函数入口之间也用一行空行分隔,以突出函数入口的开始。

空行与代码缩进不同,空行并不是 Python 语法的一部分。书写时不插入空行,Python 解释器运行也不会出错。但是空行的作用在于分隔两段不同功能或含义的代码,便于日后代码的维护或重构。

记住:空行也是程序代码的一部分。

等待用户输入

input 函数可以实现等待并接收命令行中的用户输入。

 
content = input("\n\n请输入点东西并按 Enter 键\n") print(content) 

同一行写多条语句

Python 可以在同一行中使用多条语句,语句之间使用分号 ; 分割。

 
import sys; x = 'hello world'; sys.stdout.write(x + '\n') 

多个语句构成代码组

缩进相同的一组语句构成一个代码块,我们称之代码组。

像 if 、 while 、 def 和 class 这样的复合语句,首行以关键字开始,以冒号 : 结束,该行之后的一行或多行代码构成代码组。

我们将首行及后面的代码组称为一个子句(clause)。

print 输出

print 默认输出是换行的,如果要实现不换行需要在变量末尾加上 end="" 或别的非换行符字符串:

 
print('123') # 默认换行 print('123', end = "") # 不换行 

import 与 from...import

在 Python 用 import 或者 from...import 来导入相应的模块。

将整个模块导入,格式为: import module_name

从某个模块中导入某个函数,格式为: from module_name import func1

从某个模块中导入多个函数,格式为: from module_name import func1, func2, func3

将某个模块中的全部函数导入,格式为: from module_name import *

运算符

算术运算符

比较运算符

赋值运算符

位运算符

逻辑运算符

成员运算符

身份运算符

运算符优先级

具有相同优先级的运算符将从左至右的方式依次进行。用小括号 () 可以改变运算顺序。

变量

变量在使用前必须先"定义"(即赋予变量一个值),否则会报错:

 
>>> name Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'name' is not defined 

数据类型

布尔(bool)

只有 True 和 False 两个值,表示真或假。

数字(number)

整型(int)

整数值,可正数亦可复数,无小数。

3.x 整型是没有限制大小的,可以当作 Long 类型使用,所以 3.x 没有 2.x 的 Long 类型。

浮点型(float)

浮点型由整数部分与小数部分组成,浮点型也可以使用科学计数法表示(2.5e2 = 2.5 x 10^2 = 250)

复数(complex)

复数由实数部分和虚数部分构成,可以用 a + bj ,或者 complex(a,b) 表示,复数的实部 a 和虚部 b 都是浮点型。

数字运算

  • 不同类型的数字混合运算时会将整数转换为浮点数
  • 在不同的机器上浮点运算的结果可能会不一样
  • 在整数除法中,除法 / 总是返回一个浮点数,如果只想得到整数的结果,丢弃可能的分数部分,可以使用运算符 // 。
  • // 得到的并不一定是整数类型的数,它与分母分子的数据类型有关系
  • 在交互模式中,最后被输出的表达式结果被赋值给变量 _ , _ 是个只读变量

数学函数

注:以下函数的使用,需先导入 math 包。

随机数函数

注:以下函数的使用,需先导入 random 包。

三角函数

注:以下函数的使用,需先导入 math 包。

数学常量

字符串(string)

  • 单引号和双引号使用完全相同
  • 使用三引号( ''' 或 """ )可以指定一个多行字符串
  • 转义符(反斜杠 \ )可以用来转义,使用 r 可以让反斜杠不发生转义,如 r"this is a line with \n" ,则 \n 会显示,并不是换行
  • 按字面意义级联字符串,如 "this " "is " "string" 会被自动转换为 this is string
  • 字符串可以用 + 运算符连接在一起,用 * 运算符重复
  • 字符串有两种索引方式,从左往右以 0 开始,从右往左以 -1 开始
  • 字符串不能改变
  • 没有单独的字符类型,一个字符就是长度为 1 的字符串
  • 字符串的截取的语法格式如下: 变量[头下标:尾下标]

转义字符

字符串运算符

字符串格式化

在 Python 中,字符串格式化不是 sprintf 函数,而是用 % 符号。例如:

 
print("我叫%s, 今年 %d 岁!" % ('小明', 10)) // 输出: 我叫小明, 今年 10 岁! 

格式化符号:

辅助指令:

Python 2.6 开始,新增了一种格式化字符串的函数 str.format() ,它增强了字符串格式化的功能。

多行字符串

  • 用三引号( ''' 或 """ )包裹字符串内容
  • 多行字符串内容支持转义符,用法与单双引号一样
  • 三引号包裹的内容,有变量接收或操作即字符串,否则就是多行注释

实例:

 
string = ''' print(\tmath.fabs(-10)) print(\nrandom.choice(li)) ''' print(string) 

输出:

 
print( math.fabs(-10)) print( random.choice(li)) 

Unicode

在 2.x 中,普通字符串是以 8 位 ASCII 码进行存储的,而 Unicode 字符串则存储为 16 位 Unicode 字符串,这样能够表示更多的字符集。使用的语法是在字符串前面加上前缀 u 。

在 3.x 中,所有的字符串都是 Unicode 字符串。

字符串函数

字节(bytes)

在 3.x 中,字符串和二进制数据完全区分开。文本总是 Unicode,由 str 类型表示,二进制数据则由 bytes 类型表示。Python 3 不会以任意隐式的方式混用 str 和 bytes,你不能拼接字符串和字节流,也无法在字节流里搜索字符串(反之亦然),也不能将字符串传入参数为字节流的函数(反之亦然)。

  • bytes 类型与 str 类型,二者的方法仅有 encode() 和 decode() 不同。
  • bytes 类型数据需在常规的 str 类型前加个 b 以示区分,例如 b'abc' 。
  • 只有在需要将 str 编码(encode)成 bytes 的时候,比如:通过网络传输数据;或者需要将 bytes 解码(decode)成 str 的时候,我们才会关注 str 和 bytes 的区别。

bytes 转 str:

 
b'abc'.decode() str(b'abc') str(b'abc', encoding='utf-8') 

str 转 bytes:

 
'中国'.encode() bytes('中国', encoding='utf-8') 

列表(list)

 
[) 

创建列表

 
hello = (1, 2, 3) li = [1, "2", [3, 'a'], (1, 3), hello] 

访问元素

 
li = [1, "2", [3, 'a'], (1, 3)] print(li[3]) # (1, 3) print(li[-2]) # [3, 'a'] 

切片访问

格式: list_name[begin:end:step]

begin 表示起始位置(默认为0),end 表示结束位置(默认为最后一个元素),step 表示步长(默认为1)

 
hello = (1, 2, 3) li = [1, "2", [3, 'a'], (1, 3), hello] print(li) # [1, '2', [3, 'a'], (1, 3), (1, 2, 3)] print(li[1:2]) # ['2'] print(li[:2]) # [1, '2'] print(li[:]) # [1, '2', [3, 'a'], (1, 3), (1, 2, 3)] print(li[2:]) # [[3, 'a'], (1, 3), (1, 2, 3)] print(li[1:-1:2]) # ['2', (1, 3)] 

访问内嵌 list 的元素:

 
li = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ['a', 'b', 'c']] print(li[1:-1:2][1:3]) # (3, 5) print(li[-1][1:3]) # ['b', 'c'] print(li[-1][1]) # b 

修改列表

通过使用方括号,可以非常灵活的对列表的元素进行修改、替换、删除等操作。

 
li = [0, 1, 2, 3, 4, 5] li[len(li) - 2] = 22 # 修改 [0, 1, 2, 22, 4, 5] li[3] = 33 # 修改 [0, 1, 2, 33, 4, 5] li[1:-1] = [9, 9] # 替换 [0, 9, 9, 5] li[1:-1] = [] # 删除 [0, 5] 

删除元素

可以用 del 语句来删除列表的指定范围的元素。

 
li = [0, 1, 2, 3, 4, 5] del li[3] # [0, 1, 2, 4, 5] del li[2:-1] # [0, 1, 5] 

列表操作符

 
+ * in for ... in ... [1, 2, 3] + [3, 4, 5] # [1, 2, 3, 3, 4, 5] [1, 2, 3] * 2 # [1, 2, 3, 1, 2, 3] 3 in [1, 2, 3] # True for x in [1, 2, 3]: print(x) # 1 2 3 

列表函数

 
len(list) max(list) min(list) list(seq) li = [0, 1, 5] max(li) # 5 len(li) # 3 

注: 对列表使用 max/min 函数,2.x 中对元素值类型无要求,3.x 则要求元素值类型必须一致。

列表方法

  • list.append(obj)
  • 在列表末尾添加新的对象
  • list.count(obj)
  • 返回元素在列表中出现的次数
  • list.extend(seq)
  • 在列表末尾一次性追加另一个序列中的多个值
  • list.index(obj)
  • 返回查找对象的索引位置,如果没有找到对象则抛出异常
  • list.insert(index, obj)
  • 将指定对象插入列表的指定位置
  • list.pop([index=-1]])
  • 移除列表中的一个元素(默认最后一个元素),并且返回该元素的值
  • list.remove(obj)
  • 移除列表中某个值的第一个匹配项
  • list.reverse()
  • 反向排序列表的元素
  • list.sort(cmp=None, key=None, reverse=False)
  • 对原列表进行排序,如果指定参数,则使用比较函数指定的比较函数
  • list.clear()
  • 清空列表
  • 还可以使用 del list[:] 、 li = [] 等方式实现
  • list.copy()
  • 复制列表
  • 默认使用等号赋值给另一个变量,实际上是引用列表变量。如果要实现

列表推导式

列表推导式提供了从序列创建列表的简单途径。通常应用程序将一些操作应用于某个序列的每个元素,用其获得的结果作为生成新列表的元素,或者根据确定的判定条件创建子序列。

每个列表推导式都在 for 之后跟一个表达式,然后有零到多个 for 或 if 子句。返回结果是一个根据表达从其后的 for 和 if 上下文环境中生成出来的列表。如果希望表达式推导出一个元组,就必须使用括号。

将列表中每个数值乘三,获得一个新的列表:

 
vec = [2, 4, 6] [(x, x**2) for x in vec] # [(2, 4), (4, 16), (6, 36)] 

对序列里每一个元素逐个调用某方法:

 
freshfruit = [' banana', ' loganberry ', 'passion fruit '] [weapon.strip() for weapon in freshfruit] # ['banana', 'loganberry', 'passion fruit'] 

用 if 子句作为过滤器:

 
vec = [2, 4, 6] [3*x for x in vec if x > 3] # [12, 18] vec1 = [2, 4, 6] vec2 = [4, 3, -9] [x*y for x in vec1 for y in vec2] # [8, 6, -18, 16, 12, -36, 24, 18, -54] [vec1[i]*vec2[i] for i in range(len(vec1))] # [8, 12, -54] 

列表嵌套解析:

 
matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9], ] new_matrix = [[row[i] for row in matrix] for i in range(len(matrix[0]))] print(new_matrix) # [[1, 4, 7], [2, 5, 8], [3, 6, 9]] 

元组(tuple)

  • 元组与列表类似,不同之处在于元组的元素不能修改
  • 元组使用小括号,列表使用方括号
  • 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可
  • 没有 append(),insert() 这样进行修改的方法,其他方法都与列表一样
  • 字典中的键必须是唯一的同时不可变的,值则没有限制
  • 元组中只包含一个元素时,需要在元素后面添加逗号,否则括号会被当作运算符使用

访问元组

访问元组的方式与列表是一致的。

元组的元素可以直接赋值给多个变量,但变量数必须与元素数量一致。

 
a, b, c = (1, 2, 3) print(a, b, c) 

组合元组

元组中的元素值是不允许修改的,但我们可以对元组进行连接组合

 
tup1 = (12, 34.56); tup2 = ('abc', 'xyz') tup3 = tup1 + tup2; print (tup3) # (12, 34.56, 'abc', 'xyz') 

删除元组

元组中的元素值是不允许删除的,但我们可以使用 del 语句来删除整个元组

元组函数

 
len(tuple) max(tuple) min(tuple) tuple(tuple) 

元组推导式

 
t = 1, 2, 3 print(t) # (1, 2, 3) u = t, (3, 4, 5) print(u) # ((1, 2, 3), (3, 4, 5)) 

字典(dict)

  • 字典是另一种可变容器模型,可存储任意类型对象
  • 字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中
  • 键必须是唯一的,但值则不必
  • 值可以是任意数据类型
  • 键必须是不可变的,例如:数字、字符串、元组可以,但列表就不行
  • 如果用字典里没有的键访问数据,会报错
  • 字典的元素没有顺序,不能通过下标引用元素,通过键来引用
  • 字典内部存放的顺序和 key 放入的顺序是没有关系的

格式如下:

 
d = {key1 : value1, key2 : value2 } 

访问字典

 
dis = {'a': 1, 'b': [1, 2, 3]} print(dis['b'][2]) 

修改字典

 
dis = {'a': 1, 'b': [1, 2, 3], 9: {'name': 'hello'}} dis[9]['name'] = 999 print(dis) # {'a': 1, 9: {'name': 999}, 'b': [1, 2, 3]} 

删除字典

用 del 语句删除字典或字典的元素。

 
dis = {'a': 1, 'b': [1, 2, 3], 9: {'name': 'hello'}} del dis[9]['name'] print(dis) del dis # 删除字典 # {'a': 1, 9: {}, 'b': [1, 2, 3]} 

字典函数

 
len(dict) str(dict) type(variable) key in dict 

字典方法

  • dict.clear()
  • 删除字典内所有元素
  • dict.copy()
  • 返回一个字典的浅复制
  • dict.fromkeys(seq[, value])
  • 创建一个新字典,以序列 seq 中元素做字典的键,value 为字典所有键对应的初始值
  • dict.get(key, default=None)
  • 返回指定键的值,如果值不在字典中返回默认值
  • dict.items()
  • 以列表形式返回可遍历的(键, 值)元组数组
  • dict.keys()
  • 以列表返回一个字典所有的键
  • dict.values()
  • 以列表返回字典中的所有值
  • dict.setdefault(key, default=None)
  • 如果 key 在字典中,返回对应的值。如果不在字典中,则插入 key 及设置的默认值 default,并返回 default ,default 默认值为 None。
  • dict.update(dict2)
  • 把字典参数 dict2 的键/值对更新到字典 dict 里
 
dic1 = {'a': 'a'} dic2 = {9: 9, 'a': 'b'} dic1.update(dic2) print(dic1) # {'a': 'b', 9: 9} 
  • dict.pop(key[,default])
  • 删除字典给定键 key 所对应的值,返回值为被删除的值。key 值必须给出,否则返回 default 值。
  • dict.popitem()
  • 随机返回并删除字典中的一对键和值(一般删除末尾对)

字典推导式

构造函数 dict() 直接从键值对元组列表中构建字典。如果有固定的模式,列表推导式指定特定的键值对:

 
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)]) {'sape': 4139, 'jack': 4098, 'guido': 4127} 

此外,字典推导可以用来创建任意键和值的表达式词典:

 
>>> {x: x**2 for x in (2, 4, 6)} {2: 4, 4: 16, 6: 36} 

如果关键字只是简单的字符串,使用关键字参数指定键值对有时候更方便:

 
>>> dict(sape=4139, guido=4127, jack=4098) {'sape': 4139, 'jack': 4098, 'guido': 4127} 

集合(set)

集合是一个无序不重复元素的序列

创建集合

  • 可以使用大括号 {} 或者 set() 函数创建集合
  • 创建一个空集合必须用 set() 而不是 {} ,因为 {} 是用来创建一个空字典
  • set(value) 方式创建集合,value 可以是字符串、列表、元组、字典等序列类型
  • 创建、添加、修改等操作,集合会自动去重
 
{1, 2, 1, 3} # {} {1, 2, 3} set('12345') # 字符串 {'3', '5', '4', '2', '1'} set([1, 'a', 23.4]) # 列表 {1, 'a', 23.4} set((1, 'a', 23.4)) # 元组 {1, 'a', 23.4} set({1:1, 'b': 9}) # 字典 {1, 'b'} 

添加元素

将元素 val 添加到集合 set 中,如果元素已存在,则不进行任何操作:

 
set.add(val) 

也可以用 update 方法批量添加元素,参数可以是列表,元组,字典等:

 
set.update(list1, list2,...) 

移除元素

如果存在元素 val 则移除,不存在就报错:

 
set.remove(val) 

如果存在元素 val 则移除,不存在也不会报错:

 
set.discard(val) 

随机移除一个元素:

 
set.pop() 

元素个数

与其他序列一样,可以用 len(set) 获取集合的元素个数。

清空集合

 
set.clear() set = set() 

判断元素是否存在

 
val in set 

其他方法

  • set.copy()
  • 复制集合
  • set.difference(set2)
  • 求差集,在 set 中却不在 set2 中
  • set.intersection(set2)
  • 求交集,同时存在于 set 和 set2 中
  • set.union(set2)
  • 求并集,所有 set 和 set2 的元素
  • set.symmetric_difference(set2)
  • 求对称差集,不同时出现在两个集合中的元素
  • set.isdisjoint(set2)
  • 如果两个集合没有相同的元素,返回 True
  • set.issubset(set2)
  • 如果 set 是 set2 的一个子集,返回 True
  • set.issuperset(set2)
  • 如果 set 是 set2 的一个超集,返回 True

集合计算

 
a = set('abracadabra') b = set('alacazam') print(a) # a 中唯一的字母 # {'a', 'r', 'b', 'c', 'd'} print(a - b) # 在 a 中的字母,但不在 b 中 # {'r', 'd', 'b'} print(a | b) # 在 a 或 b 中的字母 # {'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'} print(a & b) # 在 a 和 b 中都有的字母 # {'a', 'c'} print(a ^ b) # 在 a 或 b 中的字母,但不同时在 a 和 b 中 # {'r', 'd', 'b', 'm', 'z', 'l'} 

集合推导式

 
a = {x for x in 'abracadabra' if x not in 'abc'} print(a) # {'d', 'r'} 

流程控制

if 控制

 
if 表达式1: 语句 if 表达式2: 语句 elif 表达式3: 语句 else: 语句 elif 表达式4: 语句 else: 语句 

1、每个条件后面要使用冒号 : ,表示接下来是满足条件后要执行的语句块。

2、使用缩进来划分语句块,相同缩进数的语句在一起组成一个语句块。

3、在 Python 中没有 switch - case 语句。

三元运算符:

 
<表达式1> if <条件> else <表达式2> 

编写条件语句时,应该尽量避免使用嵌套语句。嵌套语句不便于阅读,而且可能会忽略一些可能性。

for 遍历

 
for <循环变量> in <循环对象>: <语句1> else: <语句2> 

else 语句中的语句2只有循环正常退出(遍历完所有遍历对象中的值)时执行。

在字典中遍历时,关键字和对应的值可以使用 items() 方法同时解读出来:

 
knights = {'gallahad': 'the pure', 'robin': 'the brave'} for k, v in knights.items(): print(k, v) 

在序列中遍历时,索引位置和对应值可以使用 enumerate() 函数同时得到:

 
for i, v in enumerate(['tic', 'tac', 'toe']): print(i, v) 

同时遍历两个或更多的序列,可以使用 zip() 组合:

 
questions = ['name', 'quest', 'favorite color'] answers = ['lancelot', 'the holy grail', 'blue'] for q, a in zip(questions, answers): print('What is your {0}? It is {1}.'.format(q, a)) 

要反向遍历一个序列,首先指定这个序列,然后调用 reversed() 函数:

 
for i in reversed(range(1, 10, 2)): print(i) 

要按顺序遍历一个序列,使用 sorted() 函数返回一个已排序的序列,并不修改原值:

 
basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'] for f in sorted(set(basket)): print(f) 

while 循环

 
while<条件>: <语句1> else: <语句2> 

break、continue、pass

break 语句用在 while 和 for 循环中,break 语句用来终止循环语句,即循环条件没有 False 条件或者序列还没被完全递归完,也会停止执行循环语句。

continue 语句用在 while 和 for 循环中,continue 语句用来告诉 Python 跳过当前循环的剩余语句,然后继续进行下一轮循环。 continue 语句跳出本次循环,而 break 跳出整个循环。

pass 是空语句,是为了保持程序结构的完整性。pass 不做任何事情,一般用做占位语句。

迭代器

  • 迭代器是一个可以记住遍历的位置的对象。
  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
  • 迭代器有两个基本的方法: iter() 和 next() 。
  • 字符串,列表或元组对象都可用于创建迭代器。

迭代器可以被 for 循环进行遍历:

 
li = [1, 2, 3] it = iter(li) for val in it: print(val) 

迭代器也可以用 next() 函数访问下一个元素值:

 
import sys li = [1,2,3,4] it = iter(li) while True: try: print (next(it)) except StopIteration: sys.exit() 

生成器

  • 在 Python 中,使用了 yield 的函数被称为生成器(generator)。
  • 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
  • 在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
  • 调用一个生成器函数,返回的是一个迭代器对象。
 
import sys def fibonacci(n): # 生成器函数 - 斐波那契 a, b, counter = 0, 1, 0 while True: if (counter > n): return yield a a, b = b, a + b counter += 1 f = fibonacci(10) # f 是一个迭代器,由生成器返回生成 while True: try: print(next(f)) except StopIteration: sys.exit() 

函数

自定义函数

函数(Functions)是指可重复使用的程序片段。它们允许你为某个代码块赋予名字,允许你通过这一特殊的名字在你的程序任何地方来运行代码块,并可重复任何次数。这就是所谓的调用(Calling)函数。

  • 函数代码块以 def 关键词开头,后接函数标识符名称和圆括号 () 。
  • 任何传入参数和自变量必须放在圆括号中间,圆括号之间可以用于定义参数。
  • 函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明。
  • 函数内容以冒号起始,并且缩进。
  • return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的 return 相当于返回 None。
  • return 可以返回多个值,此时返回的数据未元组类型。
  • 定义参数时,带默认值的参数必须在无默认值参数的后面。
 
def 函数名(参数列表): 函数体 

参数传递

在 Python 中,类型属于对象,变量是没有类型的:

 
a = [1,2,3] a = "Runoob" 

以上代码中,[1,2,3] 是 List 类型,"Runoob" 是 String 类型,而变量 a 是没有类型,她仅仅是一个对象的引用(一个指针),可以是指向 List 类型对象,也可以是指向 String 类型对象。

可更改与不可更改对象

在 Python 中,字符串,数字和元组是不可更改的对象,而列表、字典等则是可以修改的对象。

  • 不可变类型:变量赋值 a=5 后再赋值 a=10,这里实际是新生成一个 int 值对象 10,再让 a 指向它,而 5 被丢弃,不是改变a的值,相当于新生成了a。
  • 可变类型:变量赋值 la=[1,2,3,4] 后再赋值 la[2]=5 则是将 list la 的第三个元素值更改,本身la没有动,只是其内部的一部分值被修改了。

Python 函数的参数传递:

  • 不可变类型:类似 c++ 的值传递,如 整数、字符串、元组。如fun(a),传递的只是a的值,没有影响a对象本身。比如在 fun(a)内部修改 a 的值,只是修改另一个复制的对象,不会影响 a 本身。
  • 可变类型:类似 c++ 的引用传递,如 列表,字典。如 fun(la),则是将 la 真正的传过去,修改后fun外部的la也会受影响

Python 中一切都是对象,严格意义我们不能说值传递还是引用传递,我们应该说传不可变对象和传可变对象。

参数

必需参数

必需参数须以正确的顺序传入函数。调用时的数量必须和声明时的一样。

关键字参数

关键字参数和函数调用关系紧密,函数调用使用关键字参数来确定传入的参数值。

使用关键字参数允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。

 
def print_info(name, age): "打印任何传入的字符串" print("名字: ", name) print("年龄: ", age) return print_info(age=50, name="john") 

默认参数

调用函数时,如果没有传递参数,则会使用默认参数。

 
def print_info(name, age=35): print ("名字: ", name) print ("年龄: ", age) return print_info(age=50, name="john") print("------------------------") print_info(name="john") 

不定长参数

 
* def print_info(arg1, *vartuple): print("输出: ") print(arg1) for var in vartuple: print (var) return print_info(10) print_info(70, 60, 50) 
  • 加了两个星号 ** 的参数会以字典的形式导入。变量名为键,变量值为字典元素值。
 
def print_info(arg1, **vardict): print("输出: ") print(arg1) print(vardict) print_info(1, a=2, b=3) 

匿名函数

Python 使用 lambda 来创建匿名函数。

所谓匿名,意即不再使用 def 语句这样标准的形式定义一个函数。

lambda 只是一个表达式,函数体比 def 简单很多。

lambda 的主体是一个表达式,而不是一个代码块。仅仅能在 lambda 表达式中封装有限的逻辑进去。

lambda 函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。

虽然 lambda 函数看起来只能写一行,却不等同于 C 或 C++ 的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率。

 
# 语法格式 lambda [arg1 [,arg2,.....argn]]:expression 

变量作用域

  • L (Local) 局部作用域
  • E (Enclosing) 闭包函数外的函数中
  • G (Global) 全局作用域
  • B (Built-in) 内建作用域

以 L –> E –> G –> B 的规则查找,即:在局部找不到,便会去局部外的局部找(例如闭包),再找不到就会去全局找,再者去内建中找。

Python 中只有模块(module),类(class)以及函数(def、lambda)才会引入新的作用域,其它的代码块(如 if/elif/else/、try/except、for/while等)是不会引入新的作用域的,也就是说这些语句内定义的变量,外部也可以访问。

定义在函数内部的变量拥有一个局部作用域,定义在函数外的拥有全局作用域。

局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。调用函数时,所有在函数内声明的变量名称都将被加入到作用域中。

当内部作用域想修改外部作用域的变量时,就要用到global和nonlocal关键字。

 
num = 1 def fun1(): global num # 需要使用 global 关键字声明 print(num) num = 123 print(num) fun1() 

如果要修改嵌套作用域(enclosing 作用域,外层非全局作用域)中的变量则需要 nonlocal 关键字。

 
def outer(): num = 10 def inner(): nonlocal num # nonlocal关键字声明 num = 100 print(num) inner() print(num) outer() 

模块

编写模块有很多种方法,其中最简单的一种便是创建一个包含函数与变量、以 .py 为后缀的文件。

另一种方法是使用撰写 Python 解释器本身的本地语言来编写模块。举例来说,你可以使用 C 语言来撰写 Python 模块,并且在编译后,你可以通过标准 Python 解释器在你的 Python 代码中使用它们。

模块是一个包含所有你定义的函数和变量的文件,其后缀名是 .py 。模块可以被别的程序引入,以使用该模块中的函数等功能。这也是使用 Python 标准库的方法。

当解释器遇到 import 语句,如果模块在当前的搜索路径就会被导入。

搜索路径是一个解释器会先进行搜索的所有目录的列表。如想要导入模块,需要把命令放在脚本的顶端。

一个模块只会被导入一次,这样可以防止导入模块被一遍又一遍地执行。

搜索路径被存储在 sys 模块中的 path 变量。当前目录指的是程序启动的目录。

导入模块

导入模块:

 
import module1[, module2[,... moduleN] 

从模块中导入一个指定的部分到当前命名空间中:

 
from modname import name1[, name2[, ... nameN]] 

把一个模块的所有内容全都导入到当前的命名空间:

 
from modname import * 

__name__ 属性

每个模块都有一个 __name__ 属性,当其值是 '__main__' 时,表明该模块自身在运行,否则是被引入。

一个模块被另一个程序第一次引入时,其主程序将运行。如果我们想在模块被引入时,模块中的某一程序块不执行,我们可以用 __name__ 属性来使该程序块仅在该模块自身运行时执行。

 
if __name__ == '__main__': print('程序自身在运行') else: print('我来自另一模块') 

dir 函数

内置的函数 dir() 可以找到模块内定义的所有名称。以一个字符串列表的形式返回。

如果没有给定参数,那么 dir() 函数会罗列出当前定义的所有名称。

在 Python 中万物皆对象, int 、 str 、 float 、 list 、 tuple 等内置数据类型其实也是类,也可以用 dir(int) 查看 int 包含的所有方法。也可以使用 help(int) 查看 int 类的帮助信息。

包是一种管理 Python 模块命名空间的形式,采用"点模块名称"。

比如一个模块的名称是 A.B, 那么他表示一个包 A中的子模块 B 。

就好像使用模块的时候,你不用担心不同模块之间的全局变量相互影响一样,采用点模块名称这种形式也不用担心不同库之间的模块重名的情况。

在导入一个包的时候,Python 会根据 sys.path 中的目录来寻找这个包中包含的子目录。

目录只有包含一个叫做 __init__.py 的文件才会被认作是一个包,主要是为了避免一些滥俗的名字(比如叫做 string)不小心的影响搜索路径中的有效模块。

最简单的情况,放一个空的 __init__.py 文件就可以了。当然这个文件中也可以包含一些初始化代码或者为 __all__ 变量赋值。

第三方模块

  • easy_install 和 pip 都是用来下载安装 Python 一个公共资源库 PyPI 的相关资源包的,pip 是 easy_install 的改进版,提供更好的提示信息,删除 package 等功能。老版本的 python 中只有 easy_install,没有pip。
  • easy_install 打包和发布 Python 包,pip 是包管理。

easy_install 的用法:

  • 安装一个包
 
easy_install 包名 easy_install "包名 == 包的版本号" 
  • 升级一个包
 
easy_install -U "包名 >= 包的版本号" 

pip 的用法:

  • 安装一个包
 
pip install 包名 pip install 包名 == 包的版本号 
  • 升级一个包
  • (如果不提供version号,升级到最新版本)
 
pip install --upgrade 包名 >= 包的版本号 
  • 删除一个包
 
pip uninstall 包名 
  • 已安装包列表
 
pip list 

面向对象

类与对象是面向对象编程的两个主要方面。一个  (Class)能够创建一种新的类型(Type),其中 对象 (Object)就是类的 实例 (Instance)。可以这样来类比:你可以拥有类型 int的变量,也就是说存储整数的变量是 int 类的实例(对象)。

  • 类(Class) :用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。
  • 方法 :类中定义的函数。
  • 类变量 :类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。
  • 数据成员 :类变量或者实例变量用于处理类及其实例对象的相关的数据。
  • 方法重写 :如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖(override),也称为方法的重写。
  • 实例变量 :定义在方法中的变量,只作用于当前实例的类。
  • 继承 :即一个派生类(derived class)继承基类(base class)的字段和方法。继承也允许把一个派生类的对象作为一个基类对象对待。例如,有这样一个设计:一个Dog类型的对象派生自Animal类,这是模拟"是一个(is-a)"关系(例图,Dog是一个Animal)。
  • 实例化 :创建一个类的实例,类的具体对象。
  • 对象 :通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。

Python 中的类提供了面向对象编程的所有基本功能:类的继承机制允许多个基类,派生类可以覆盖基类中的任何方法,方法中可以调用基类中的同名方法。

对象可以包含任意数量和类型的数据。

self

self 表示的是当前实例,代表当前对象的地址。类由 self.__class__ 表示。

self 不是关键字,其他名称也可以替代,但 self 是个通用的标准名称。

类由 class 关键字来创建。

类实例化后,可以使用其属性,实际上,创建一个类之后,可以通过类名访问其属性。

对象方法

方法由 def 关键字定义,与函数不同的是,方法必须包含参数 self , 且为第一个参数, self代表的是本类的实例。

类方法

装饰器 @classmethod 可以将方法标识为类方法。类方法的第一个参数必须为 cls ,而不再是self 。

静态方法

装饰器 @staticmethod 可以将方法标识为静态方法。静态方法的第一个参数不再指定,也就不需要 self 或 cls 。

__init__ 方法

__init__ 方法即构造方法,会在类的对象被实例化时先运行,可以将初始化的操作放置到该方法中。

如果重写了 __init__ ,实例化子类就不会调用父类已经定义的 __init__ 。

变量

类变量 (Class Variable)是共享的(Shared)——它们可以被属于该类的所有实例访问。该类变量只拥有一个副本,当任何一个对象对类变量作出改变时,发生的变动将在其它所有实例中都会得到体现。

对象变量 (Object variable)由类的每一个独立的对象或实例所拥有。在这种情况下,每个对象都拥有属于它自己的字段的副本,也就是说,它们不会被共享,也不会以任何方式与其它不同实例中的相同名称的字段产生关联。

在 Python 中,变量名类似 __xxx__ 的,也就是以双下划线开头,并且以双下划线结尾的,是特���变量,特殊变量是可以直接访问的,不是 private 变量,所以,不能用 __name__ 、 __score__ 这样的变量名。

访问控制

  • 私有属性
  • __private_attr :两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问。
  • 私有方法
  • __private_method :两个下划线开头,声明该方法为私有方法,只能在类的内部调用,不能在类地外部调用。

我们还认为约定,一个下划线开头的属性或方法为 受保护 的。比如, _protected_attr 、 _protected_method 。

继承

类可以继承,并且支持继承多个父类。在定义类时,类名后的括号中指定要继承的父类,多个父类之间用逗号分隔。

子类的实例可以完全访问所继承所有父类的非私有属性和方法。

若是父类中有相同的方法名,而在子类使用时未指定,Python 从左至右搜索,即方法在子类中未找到时,从左到右查找父类中是否包含方法。

方法重写

子类的方法可以重写父类的方法。重写的方法参数不强制要求保持一致,不过合理的设计都应该保持一致。

super() 函数可以调用父类的一个方法,以多继承问题。

类的专有方法:

 
__init__ __del__ __repr__ __setitem__ __getitem__ __len__ __cmp__ __call__ __add__ __sub__ __mul__ __div__ __mod__ __pow__ 

类的专有方法也支持重载。

实例

 
class Person: """人员信息""" # 姓名(共有属性) name = '' # 年龄(共有属性) age = 0 def __init__(self, name='', age=0): self.name = name self.age = age # 重载专有方法: __str__ def __str__(self): return "这里重载了 __str__ 专有方法, " + str({'name': self.name, 'age': self.age}) def set_age(self, age): self.age = age class Account: """账户信息""" # 账户余额(私有属性) __balance = 0 # 所有账户总额 __total_balance = 0 # 获取账户余额 # self 必须是方法的第一个参数 def balance(self): return self.__balance # 增加账户余额 def balance_add(self, cost): # self 访问的是本实例 self.__balance += cost # self.__class__ 可以访问类 self.__class__.__total_balance += cost # 类方法(用 @classmethod 标识,第一个参数为 cls)  @classmethod def total_balance(cls): return cls.__total_balance # 静态方法(用 @staticmethod 标识,不需要类参数或实例参数)  @staticmethod def exchange(a, b): return b, a class Teacher(Person, Account): """教师""" # 班级名称 _class_name = '' def __init__(self, name): # 第一种重载父类__init__()构造方法 # super(子类,self).__init__(参数1,参数2,....) super(Teacher, self).__init__(name) def get_info(self): # 以字典的形式返回个人信息 return { 'name': self.name, # 此处访问的是父类Person的属性值 'age': self.age, 'class_name': self._class_name, 'balance': self.balance(), # 此处调用的是子类重载过的方法 } # 方法重载 def balance(self): # Account.__balance 为私有属性,子类无法访问,所以父类提供方法进行访问 return Account.balance(self) * 1.1 class Student(Person, Account): """学生""" _teacher_name = '' def __init__(self, name, age=18): # 第二种重载父类__init__()构造方法 # 父类名称.__init__(self,参数1,参数2,...) Person.__init__(self, name, age) def get_info(self): # 以字典的形式返回个人信息 return { 'name': self.name, # 此处访问的是父类Person的属性值 'age': self.age, 'teacher_name': self._teacher_name, 'balance': self.balance(), } # 教师 John john = Teacher('John') john.balance_add(20) john.set_age(36) # 子类的实例可以直接调用父类的方法 print("John's info:", john.get_info()) # 学生 Mary mary = Student('Mary', 18) mary.balance_add(18) print("Mary's info:", mary.get_info()) # 学生 Fake fake = Student('Fake') fake.balance_add(30) print("Fake's info", fake.get_info()) # 三种不同的方式调用静态方法 print("john.exchange('a', 'b'):", john.exchange('a', 'b')) print('Teacher.exchange(1, 2)', Teacher.exchange(1, 2)) print('Account.exchange(10, 20):', Account.exchange(10, 20)) # 类方法、类属性 print('Account.total_balance():', Account.total_balance()) print('Teacher.total_balance():', Teacher.total_balance()) print('Student.total_balance():', Student.total_balance()) # 重载专有方法 print(fake) 

输出:

 
John's info: {'name': 'John', 'age': 36, 'class_name': '', 'balance': 22.0} Mary's info: {'name': 'Mary', 'age': 18, 'teacher_name': '', 'balance': 18} Fake's info {'name': 'Fake', 'age': 18, 'teacher_name': '', 'balance': 30} john.exchange('a', 'b'): ('b', 'a') Teacher.exchange(1, 2) (2, 1) Account.exchange(10, 20): (20, 10) Account.total_balance(): 0 Teacher.total_balance(): 20 Student.total_balance(): 48 这里重载了 __str__ 专有方法, {'name': 'Fake', 'age': 18} 

错误和异常

语法错误

SyntaxError 类表示语法错误,当解释器发现代码无法通过语法检查时会触发的错误。语法错误是无法用 try...except... 捕获的。

 
>>> print: File "<stdin>", line 1 print: ^ SyntaxError: invalid syntax 

异常

即便程序的语法是正确的,在运行它的时候,也有可能发生错误。运行时发生的错误被称为异常。

错误信息的前面部分显示了异常发生的上下文,并以调用栈的形式显示具体信息。

 
>>> 1 + '0' Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unsupported operand type(s) for +: 'int' and 'str' 

异常处理

Python 提供了 try ... except ... 的语法结构来捕获和处理异常。

try 语句执行流程大致如下:

 
st=>start: try 子句 cond_has_error=>condition: 是否有异常 cond_has_else=>condition: 是否有 else 子句 cond_has_finally=>condition: 是否有 finally 子句 io=>inputoutput: verification op_except=>operation: except 子句处理异常 op_else=>operation: 执行 else 子句 op_finally=>operation: 执行 finally 子句 e=>end: 结束 st->cond_has_error cond_has_error(yes, right)->op_except->cond_has_else cond_has_error(no)->cond_has_else cond_has_else(yes, right)->op_else->cond_has_finally cond_has_else(no)->cond_has_finally cond_has_finally(yes, right)->op_finally->e cond_has_finally(no)->e 
  • 首先,执行 try 子句(在关键字 try 和关键字 except 之间的语句)
  • 如果没有异常发生,忽略 except 子句,try 子句执行后结束。
  • 如果在执行 try 子句的过程中发生了异常,那么 try 子句余下的部分将被忽略。如果异常的类型和 except 之后的名称相符,那么对应的 except 子句将被执行。最后执行 try 语句之后的代码。
  • 如果一个异常没有与任何的 except 匹配,那么这个异常将会传递给上层的 try 中。
  • 一个 try 语句可能包含多个 except 子句,分别来处理不同的特定的异常。
  • 最多只有一个 except 子句会被执行。
  • 处理程序将只针对对应的 try 子句中的异常进行处理,而不是其他的 try 的处理程序中的异常。
  • 一个 except 子句可以同时处理多个异常,这些异常将被放在一个括号里成为一个元组。
  • 最后一个 except 子句可以忽略异常的名称,它将被当作通配符使用。可以使用这种方法打印一个错误信息,然后再次把异常抛出。
  • try except 语句还有一个可选的 else 子句,如果使用这个子句,那么必须放在所有的 except 子句之后。这个子句将在 try 子句没有发生任何异常的时候执行。
  • 异常处理并不仅仅处理那些直接发生在 try 子句中的异常,而且还能处理子句中调用的函数(甚至间接调用的函数)里抛出的异常。
  • 不管 try 子句里面有没有发生异常,finally 子句都会执行。
  • 如果一个异常在 try 子句里(或者在 except 和 else 子句里)被抛出,而又没有任何的 except 把它截住,那么这个异常会在 finally 子句执行后再次被抛出。

抛出异常

使用 raise 语句抛出一个指定的异常。

raise 唯一的一个参数指定了要被抛出的异常。它必须是一个异常的实例或者是异常的类(也就是 Exception 的子类)。

如果你只想知道这是否抛出了一个异常,并不想去处理它,那么一个简单的 raise 语句就可以再次把它抛出。

自定义异常

可以通过创建一个新的异常类来拥有自己的异常。异常类继承自 Exception 类,可以直接继承,或者间接继承。

当创建一个模块有可能抛出多种不同的异常时,一种通常的做法是为这个包建立一个基础异常类,然后基于这个基础类为不同的错误情况创建不同的子类。

大多数的异常的名字都以"Error"结尾,就跟标准的异常命名一样。

实例

 
import sys class Error(Exception): """Base class for exceptions in this module.""" pass # 自定义异常 class InputError(Error): """Exception raised for errors in the input. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """ def __init__(self, expression, message): self.expression = expression self.message = message try: print('code start running...') raise InputError('input()', 'input error') # ValueError int('a') # TypeError s = 1 + 'a' dit = {'name': 'john'} # KeyError print(dit['1']) except InputError as ex: print("InputError:", ex.message) except TypeError as ex: print('TypeError:', ex.args) pass except (KeyError, IndexError) as ex: """支持同时处理多个异常, 用括号放到元组里""" print(sys.exc_info()) except: """捕获其他未指定的异常""" print("Unexpected error:", sys.exc_info()[0]) # raise 用于抛出异常 raise RuntimeError('RuntimeError') else: """当无任何异常时, 会执行 else 子句""" print('"else" 子句...') finally: """无论有无异常, 均会执行 finally""" print('finally, ending') 

文件操作

打开文件

open() 函数用于打开/创建一个文件,并返回一个 file 对象:

 
open(filename, mode) 
  • filename:包含了你要访问的文件名称的字符串值
  • mode:决定了打开文件的模式:只读,写入,追加等

文件打开模式:

文件对象方法

  • fileObject.close()
  • close() 方法用于关闭一个已打开的文件。关闭后的文件不能再进行读写操作,否则会触发 ValueError 错误。 close() 方法允许调用多次。
  • 当 file 对象,被引用到操作另外一个文件时,Python 会自动关闭之前的 file 对象。 使用 close() 方法关闭文件是一个好的习惯。
  • fileObject.flush()
  • flush() 方法是用来刷新缓冲区的,即将缓冲区中的数据立刻写入文件,同时清空缓冲区,不需要是被动的等待输出缓冲区写入。
  • 一般情况下,文件关闭后会自动刷新缓冲区,但有时你需要在关闭前刷新它,这时就可以使用 flush() 方法。
  • fileObject.fileno()
  • fileno() 方法返回一个整型的文件描述符(file descriptor FD 整型),可用于底层操作系统的 I/O 操作。
  • fileObject.isatty()
  • isatty() 方法检测文件是否连接到一个终端设备,如果是返回 True,否则返回 False。
  • next(iterator[,default])
  • Python 3 中的 File 对象不支持 next() 方法。 Python 3 的内置函数 next() 通过迭代器调用 __next__() 方法返回下一项。在循环中, next() 函数会在每次循环中调用,该方法返回文件的下一行,如果到达结尾(EOF),则触发 StopIteration。
  • fileObject.read()
  • read() 方法用于从文件读取指定的字节数,如果未给定或为负则读取所有。
  • fileObject.readline()
  • readline() 方法用于从文件读取整行,包括 "\n" 字符。如果指定了一个非负数的参数,则返回指定大小的字节数,包括 "\n" 字符。
  • fileObject.readlines()
  • readlines() 方法用于读取所有行(直到结束符 EOF)并返回列表,该列表可以由 Python 的 for... in ... 结构进行处理。如果碰到结束符 EOF,则返回空字符串。
  • fileObject.seek(offset[, whence])
  • seek() 方法用于移动文件读取指针到指定位置。
  • whence 的值, 如果是 0 表示开头, 如果是 1 表示当前位置, 2 表示文件的结尾。whence 值为默认为0,即文件开头。例如:
  • seek(x, 0) :从起始位置即文件首行首字符开始移动 x 个字符
  • seek(x, 1) :表示从当前位置往后移动 x 个字符
  • seek(-x, 2) :表示从文件的结尾往前移动 x 个字符
  • fileObject.tell(offset[, whence])
  • tell() 方法返回文件的当前位置,即文件指针当前位置。
  • fileObject.truncate([size])
  • truncate() 方法用于从文件的首行首字符开始截断,截断文件为 size 个字符,无 size 表示从当前位置截断;截断之后 V 后面的所有字符被删除,其中 Widnows 系统下的换行代表2个字符大小。
  • fileObject.write([str])
  • write() 方法用于向文件中写入指定字符串。
  • 在文件关闭前或缓冲区刷新前,字符串内容存储在缓冲区中,这时你在文件中是看不到写入的内容的。
  • 如果文件打开模式带 b,那写入文件内容时,str (参数)要用 encode 方法转为 bytes 形式,否则报错: TypeError: a bytes-like object is required, not 'str' 。
  • fileObject.writelines([str])
  • writelines() 方法用于向文件中写入一序列的字符串。这一序列字符串可以是由迭代对象产生的,如一个字符串列表。换行需要指定换行符 \n 。

实例

 
filename = 'data.log' # 打开文件(a+ 追加读写模式) # 用 with 关键字的方式打开文件,会自动关闭文件资源 with open(filename, 'w+', encoding='utf-8') as file: print('文件名称: {}'.format(file.name)) print('文件编码: {}'.format(file.encoding)) print('文件打开模式: {}'.format(file.mode)) print('文件是否可读: {}'.format(file.readable())) print('文件是否可写: {}'.format(file.writable())) print('此时文件指针位置为: {}'.format(file.tell())) # 写入内容 num = file.write("第一行内容\n") print('写入文件 {} 个字符'.format(num)) # 文件指针在文件尾部,故无内容 print(file.readline(), file.tell()) # 改变文件指针到文件头部 file.seek(0) # 改变文件指针后,读取到第一行内容 print(file.readline(), file.tell()) # 但文件指针的改变,却不会影响到写入的位置 file.write('第二次写入的内容\n') # 文件指针又回到了文件尾 print(file.readline(), file.tell()) # file.read() 从当前文件指针位置读取指定长度的字符 file.seek(0) print(file.read(9)) # 按行分割文件,返回字符串列表 file.seek(0) print(file.readlines()) # 迭代文件对象,一行一个元素 file.seek(0) for line in file: print(line, end='') # 关闭文件资源 if not file.closed: file.close() 

输出:

 
文件名称: data.log 文件编码: utf-8 文件打开模式: w+ 文件是否可读: True 文件是否可写: True 此时文件指针位置为: 0 写入文件 6 个字符 16 第一行内容 16 41 第一行内容 第二次 ['第一行内容\n', '第二次写入的内容\n'] 第一行内容 第二次写入的内容 

序列化

在 Python 中 pickle 模块实现对数据的序列化和反序列化。pickle 支持任何数据类型,包括内置数据类型、函数、类、对象等。

方法

dump

将数据对象序列化后写入文件

 
pickle.dump(obj, file, protocol=None, fix_imports=True) 

必填参数 obj 表示将要封装的对象。

必填参数 file 表示 obj 要写入的文件对象,file 必须以二进制可写模式打开,即 wb 。

可选参数 protocol 表示告知 pickle 使用的协议,支持的协议有 0,1,2,3,默认的协议是添加在 Python 3 中的协议3。

load

从文件中读取内容并反序列化

 
pickle.load(file, fix_imports=True, encoding='ASCII', errors='strict') 

必填参数 file 必须以二进制可读模式打开,即 rb ,其他都为可选参数。

dumps

以字节对象形式返回封装的对象,不需要写入文件中

 
pickle.dumps(obj, protocol=None, fix_imports=True) 

loads

从字节对象中读取被封装的对象,并返回

 
pickle.loads(bytes_object, fix_imports=True, encoding='ASCII', errors='strict') 

实例

 
import pickle data = [1, 2, 3] # 序列化数据并以字节对象返回 dumps_obj = pickle.dumps(data) print('pickle.dumps():', dumps_obj) # 从字节对象中反序列化数据 loads_data = pickle.loads(dumps_obj) print('pickle.loads():', loads_data) filename = 'data.log' # 序列化数据到文件中 with open(filename, 'wb') as file: pickle.dump(data, file) # 从文件中加载并反序列化 with open(filename, 'rb') as file: load_data = pickle.load(file) print('pickle.load():', load_data) 

输出:

 
pickle.dumps(): b'\x80\x03]q\x00(K\x01K\x02K\x03e.' pickle.loads(): [1, 2, 3] pickle.load(): [1, 2, 3] 

命名规范

Python 之父 Guido 推荐的规范

猜你喜欢

转载自blog.csdn.net/qq_42207221/article/details/85005509