JDK1.8源码解读——HashMap源码

从类的Doc文档注释中,我们可以得出HashMap的一些特性:
  1 无序 允许为null 非同步
  2 底层由哈希表实现
  3 初始容量和负载因子对HashMap的影响很大
成员变量:

   /**默认初始值,必须是二的倍数 */
   static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 
   /** 最大容量 */
   static final int MAXIMUM_CAPACITY = 1 << 30;
   /**默认的负载因子 */
   static final float DEFAULT_LOAD_FACTOR = 0.75f;
   /**阈值,一个哈希桶被添加到TREEIFY_THRESHOLD个节点的时候,桶中的链表会被转化为红黑二叉树 */
   static final int TREEIFY_THRESHOLD = 8;
   /** 阈值,将红黑二叉树转化成链表(红黑二叉树为了保持平衡,要进行左旋,右旋,换色,消耗资源)*/
   static final int UNTREEIFY_THRESHOLD = 6;
   /**桶可能被树化为树形结构的最小容量*/
   static final int MIN_TREEIFY_CAPACITY = 64;

存储结构:
HashMap内部包含了一个Node类型的数组table,Node即为 JDK1.8之前的Entry

transient Node<K,V>[] table;
/**
* Basic hash bin node, used for most entries.  (See below for
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
*/
static class Node<K,V> implements Map.Entry<K,V> {
 final int hash;
 final K key;
 V value;
 Node<K,V> next;

 Node(int hash, K key, V value, Node<K,V> next) {
     this.hash = hash;
     this.key = key;
     this.value = value;
     this.next = next;
 }

 public final K getKey()        { return key; }
 public final V getValue()      { return value; }
 public final String toString() { return key + "=" + value; }

 public final int hashCode() {
     return Objects.hashCode(key) ^ Objects.hashCode(value);
 }

 public final V setValue(V newValue) {
     V oldValue = value;
     value = newValue;
     return oldValue;
 }

 public final boolean equals(Object o) {
     if (o == this)
         return true;
     if (o instanceof Map.Entry) {
         Map.Entry<?,?> e = (Map.Entry<?,?>)o;
         if (Objects.equals(key, e.getKey()) &&
             Objects.equals(value, e.getValue()))
             return true;
     }
     return false;
 }
}

结论:
  Node里存储的是键值对。包含四个字段,从next字段我们可以看出Node是一个链表。
即table数组中每个位置被当成一个桶,一个桶用来存放一个链表Node。
  HashMap使用拉链法来解决冲突(ThreadLocalMap则是采用线性探测法),同一个链表存放key的哈希值相同的Node
1 put方法(HashMap的核心):

public V put(K key, V value) {
  return putVal(hash(key), key, value, false, true);
}

hash后的key,key Value ,两个参数

首先,看一下hash方法

static final int hash(Object key) {
  int h;
  return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

结论:
  int 一共32位,这里作者将其分成前16位和后16位。取key的hashcode,与keyhashCode的高16位做异或。这里是将低16位与高16位做运算,得到的值实际上是高位和低位的结合,这就增加了随机性。在一定程度上减少了散列冲突的发生。这里hashCode是调用的Object中的hashCode,即引用对象的hashcode与其内存地址有关

/**
* Implements Map.put and related methods
*
* @param key的哈希值
* @param key 键
* @param value 要放入的值
* @param onlyIfAbsent true 则不改变现有值,默认是false
* @param evict 如果是false,则表处于创建模式,默认是true
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
             boolean evict) {
  Node<K,V>[] tab; Node<K,V> p; int n, i;
  if ((tab = table) == null || (n = tab.length) == 0)
      n = (tab = resize()).length;
 //如果散列表为null,则初始化散列表
  if ((p = tab[i = (n - 1) & hash]) == null)
      tab[i] = newNode(hash, key, value, null);
  //将对象放入散列表的时,默认初始容量是16,也就是说,要放到table数组的0-15的位置上,所以通过tab[i = (n - 1) & hash]来确定数组下标位置,n如果为奇数,则n-1为偶数,0与任何数的&运算都是0,会造成一部分的内存浪费(下标最后一位为0的位置存不会存值)
  //如果没有发生散列冲突,则直接将新建的Entry对象放入table数组中
  else {
      Node<K,V> e; K k;
      if (p.hash == hash &&
          ((k = p.key) == key || (key != null && key.equals(k))))
          e = p;
//如果发生了散列冲突,就先记录下发生冲突的Node
      else if (p instanceof TreeNode)
          e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
   //如果红黑树结构,则调用红合数的插入方法
      else {
          for (int binCount = 0; ; ++binCount) {
              if ((e = p.next) == null) {
          //如果遍历链表没有发现该此节点,就插入链表的尾部(尾插法,1.8之前都是头插法)
                  p.next = newNode(hash, key, value, null);
          //如果插入后链表长度大于8,则转换为红黑树
                  if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                      treeifyBin(tab, hash);
                  break;
              }
         //如果key在链表中已经存在,则退出循环
              if (e.hash == hash &&
                  ((k = e.key) == key || (key != null && key.equals(k))))
                  break;
              p = e;
          }
      }
   //如果key在链表中已经存在,则修改其原先的key值,并且返回老的值
      if (e != null) { // existing mapping for key
          V oldValue = e.value;
          if (!onlyIfAbsent || oldValue == null)
              e.value = value;
          afterNodeAccess(e);
          return oldValue;
      }
  }
  ++modCount;
  if (++size > threshold)
      resize();
  afterNodeInsertion(evict);
  return null;
}

2 resize()方法:是HashMap的扩容方法,新的容量是旧的容量的两倍,需要注意的是,扩容操作同样需要把 oldTable 的所有键值对重新插入 newTable 中,因此这一步是很费时的。

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

3 get方法

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

通过key计算哈希值,调用getNode()来获取对应的value

/**
 * Implements Map.get and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @return the node, or null if none
 */
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
    //判断计算出来的hash值是否在散列表上
 
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
       //检查第一个位置,如果在桶的首位就可以被找到,那就直接返回
 
        if ((e = first.next) != null) {
    //否则则在红黑树中或者遍历链表寻找
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

4 remove方法:从此映射中删除指定键的映射(如果存在)

public V remove(Object key) {
   Node<K,V> e;
   return (e = removeNode(hash(key), key, null, false, true)) == null ?
       null : e.value;
}
通过key计算哈希值,调用removeNode()来删除节点

final Node<K,V> removeNode(int hash, Object key, Object value,
                          boolean matchValue, boolean movable) {
   Node<K,V>[] tab; Node<K,V> p; int n, index;
   if ((tab = table) != null && (n = tab.length) > 0 &&
       (p = tab[index = (n - 1) & hash]) != null) {
    //同get,判断计算出来的hash值是否在散列表上
       Node<K,V> node = null, e; K k; V v;
       if (p.hash == hash &&
           ((k = p.key) == key || (key != null && key.equals(k))))
           node = p;
    //先查找首位,如果可以找到,就记录下来
       else if ((e = p.next) != null) {
           if (p instanceof TreeNode)
               node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
           else {
               do {
                   if (e.hash == hash &&
                       ((k = e.key) == key ||
                        (key != null && key.equals(k)))) {
                       node = e;
                       break;
                   }
                   p = e;
               } while ((e = e.next) != null);
           }
       }
   //不是在首位,就去红黑树或者链表中查找,如果可以找到就记录下来

       if (node != null && (!matchValue || (v = node.value) == value ||
                            (value != null && value.equals(v)))) {
           if (node instanceof TreeNode)
               ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
           else if (node == p)
               tab[index] = node.next;
           else
               p.next = node.next;
           ++modCount;
           --size;
           afterNodeRemoval(node);
           return node;
      //找到了对应的节点,并且value值对应上了,那么就可以删除了,这里也分三种情况,在链表,在红黑树,在桶的首位
       }
   }
   return null;
}

参考资料:
jdk1.8源码
https://github.com/CyC2018/CS-Notes/blob/master/notes/Java 容器.md#hashmap
大牛博客
https://blog.csdn.net/qq_33256688/article/details/79938886
HashMap到底是插入链表头部还是尾部

猜你喜欢

转载自blog.csdn.net/Kirito19970409/article/details/84573747