一文带你看懂卷积神经网络(CNN)让你意想不到的10创新idea

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_27825451/article/details/84290450

1537250305768859.png

1537520241840992.png

全文摘要

卷积神经网络(CNN)可以说是深度学习发展的一个缩影,特别是现在在计算机视觉方面已经得到了非常成熟的应用,在目标检测、目标追踪等方面也是独领风骚,本文将讲述卷积神经网络近些年来的发展历程,以及它到底创新在什么地方。本文略长,看完大约30min。

卷积神经网络的十大概念与创新

 1、Group convolution 

卷积只能在同一组进行吗?

答案当然是能!!!

Group convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把feature maps分给多个GPU分别进行处理,最后把多个GPU的结果进行融合。

这里写图片描述

AlexNet分组卷积的思想影响比较深远,当前一些轻量级的SOTA(State Of The Art)网络,都用到了分组卷积的操作,以节省计算量。

 2、卷积核的大小问题 

卷积核一定越大越好?

并不是的,现在3×3卷积核用的非常广泛 

AlexNet中用到了一些非常大的卷积核,比如11×11、5×5卷积核,之前人们的观念是,卷积核越大,receptive field(感受野)越大,看到的图片信息越多,因此获得的特征越好。虽说如此,但是大的卷积核会导致计算量的暴增,不利于模型深度的增加,计算性能也会降低。于是在VGG(最早使用)、Inception网络中,利用2个3×3卷积核的组合比1个5×5卷积核的效果更佳,同时参数量(3×3×2+1 VS 5×5×1+1)被降低,因此后来3×3卷积核被广泛应用在各种模型中。 
这里写图片描述

如果不是特别清楚什么是“感受野”,可以参见我的另外一篇文章:

 3、同层卷积核的大小 

每层卷积只能用一种尺寸的卷积核?

并不是,比如现在广泛使用的Inception结构。 

传统的层叠式网络,基本上都是一个个卷积层的堆叠,每层只用一个尺寸的卷积核,例如VGG结构中使用了大量的3×3卷积层。事实上,同一层feature map可以分别使用多个不同尺寸的卷积核,以获得不同尺度的特征,再把这些特征结合起来,得到的特征往往比使用单一卷积核的要好,谷歌的GoogLeNet,或者说Inception系列的网络,就使用了多个卷积核的结构: 
这里写图片描述

最初版本的Inception结构

如上图所示,一个输入的feature map分别同时经过1×1、3×3、5×5的卷积核的处理,得出的特征再组合起来,获得更佳的特征。但这个结构会存在一个严重的问题:参数量比单个卷积核要多很多,如此庞大的计算量会使得模型效率低下。这就引出了一个新的结构,参见如下。

 4、googleNet的改进 

怎样才能减少卷积层参数量?

1x1的卷积核提供了新的解决思路。 
发明GoogleNet的团队发现,如果仅仅引入多个尺寸的卷积核,会带来大量的额外的参数,受到Network In Network中1×1卷积核的启发,为了解决这个问题,他们往Inception结构中加入了一些1×1的卷积核,如图所示: 
这里写图片描述

加入1×1卷积核的Inception结构 
这里写图片描述

根据上图,我们来做个对比计算,假设输入feature map的维度为256维,要求输出维度也是256维。有以下两种操作:

256维的输入直接经过一个3×3×256的卷积层,输出一个256维的feature map,那么参数量为:256×3×3×256 = 589,824

256维的输入先经过一个1×1×64的卷积层,再经过一个3×3×64的卷积层,最后经过一个1×1×256的卷积层,输出256维,参数量为:256×1×1×64 + 64×3×3×64 + 64×1×1×256 = 69,632。足足把第一种操作的参数量降低到九分之一!

1×1卷积核也被认为是影响深远的操作,往后大型的网络为了降低参数量都会应用上1×1卷积核。

 5、超级“深层”网络的福音 

越深的网络就越难训练吗?

不是的。2015年诞生的 Resnet残差网络提供了新的解决思路。

残差网络的结构如下所示:
这里写图片描述

ResNet skip connection

传统的卷积层层叠网络会遇到一个问题,当层数加深时,网络的表现越来越差,很大程度上的原因是因为当层数加深时,梯度消散得越来越严重,以至于反向传播很难训练到浅层的网络。为了解决这个问题,何凯明大神想出了一个“残差网络”,使得梯度更容易地流动到浅层的网络当中去,而且这种“skip connection”能带来更多的好处,为什么深度残差网络可以解决深度网络的梯度问题?以及它所带来的其它优势到底是什么?后面的文章都会讲解到。

 6、卷积核的通道计算问题 

卷积操作时必须同时考虑通道和区域吗?

不是的,

谷歌于2017年提出了一种完全基于depthwise separable convolution层的卷积神经网络架构。实际上,做出了以下假设:在卷积神经网络的特征映射中,交叉通道相关性和空间相关性的映射可以完全解耦(代表的意思就是每一个特征通道各自进行各自的特征映射,不一定要所有的通道都进入到同一个卷积核)。因为这个假设是在Inception架构假设的基础上的假设增强版本,我们将我们提出的架构命名为Xception,它代表“极端Inception”

这里写图片描述

标准的卷积过程可以看上图,一个2×2的卷积核在卷积时,对应图像区域中的所有通道均被同时考虑,问题在于,为什么一定要同时考虑图像区域和通道?我们为什么不能把通道和空间区域分开考虑? 
这里写图片描述

Xception网络就是基于以上的问题发明而来。我们首先对每一个通道进行各自的卷积操作,有多少个通道就有多少个过滤器。得到新的通道feature maps之后,这时再对这批新的通道feature maps进行标准的1×1跨通道卷积操作。这种操作被称为 “DepthWise convolution” ,缩写“DW”。

这种操作是相当有效的,在imagenet 1000类分类任务中已经超过了InceptionV3的表现,而且也同时减少了大量的参数,我们来算一算,假设输入通道数为3,要求输出通道数为256,两种做法:

1.直接接一个3×3×256的卷积核,参数量为:3×3×3×256 = 6,912

2.DW操作,分两步完成,参数量为:3×3×3 + 3×1×1×256 = 795,又把参数量降低到九分之一!

因此,一个depthwise操作比标准的卷积操作降低不少的参数量,同时论文中指出这个模型得到了更好的分类效果。

 7、分组卷积的特征融合 

分组卷积能否对通道进行随机分组?

当然是能的

 ShuffleNet 在AlexNet的Group Convolution当中,特征的通道被平均分到不同组里面,最后再通过两个全连接层来融合特征,这样一来,就只能在最后时刻才融合不同组之间的特征,对模型的泛化性是相当不利的。为了解决这个问题,ShuffleNet在每一次层叠这种Group conv层前,都进行一次channel shuffle,shuffle过的通道被分配到不同组当中。进行完一次group conv之后,再一次channel shuffle,然后分到下一层组卷积当中,以此循环。 
这里写图片描述

经过channel shuffle之后,Group conv输出的特征能考虑到更多通道,输出的特征自然代表性就更高。另外,AlexNet的分组卷积,实际上是标准卷积操作,而在ShuffleNet里面的分组卷积操作是depthwise卷积,因此结合了通道洗牌和分组depthwise卷积的ShuffleNet,能得到超少量的参数以及超越mobilenet、媲美AlexNet的准确率!

另外值得一提的是,微软亚洲研究院MSRA最近也有类似的工作,他们提出了一个IGC单元(Interleaved Group Convolution),即通用卷积神经网络交错组卷积,形式上类似进行了两次组卷积,Xception 模块可以看作交错组卷积的一个特例,特别推荐看看这篇文章:王井东详解ICCV 2017入选论文:通用卷积神经网络交错组卷积(http://t.cn/RCEmI8e

要注意的是,Group conv是一种channel分组的方式,Depthwise +Pointwise是卷积的方式,只是ShuffleNet里面把两者应用起来了。因此Group conv和Depthwise +Pointwise并不能划等号。

 8、不同通道上面的特征是平等的吗 

通道间的特征都是平等的吗?

 不是的。2017年ImageNet的冠军 SEnet 就不是。

它就是通过学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要程度去提升有用的特征并抑制对当前任务用处不大的特征。无论是在Inception、DenseNet或者ShuffleNet里面,我们对所有通道产生的特征都是不分权重直接结合的,那为什么要认为所有通道的特征对模型的作用就是相等的呢? 这是一个好问题,于是,ImageNet2017 冠军SEnet就出来了。 
这里写图片描述

SEnet 结构

一组特征在上一层被输出,这时候分两条路线,第一条直接通过,第二条首先进行Squeeze操作(Global Average Pooling),把每个通道2维的特征压缩成一个1维,从而得到一个特征通道向量(每个数字代表对应通道的特征)。然后进行Excitation操作,把这一列特征通道向量输入两个全连接层和sigmoid,建模出特征通道间的相关性,得到的输出其实就是每个通道对应的权重,把这些权重通过Scale乘法通道加权到原来的特征上(第一条路),这样就完成了特征通道的权重分配。

 9、卷积核能感受到的大小范围 

能否让固定大小的卷积核看到更大范围的区域?

当然是能的。空洞卷积Dilated convolution的出现很好地解决了这一问题。 
标准的3×3卷积核只能看到对应区域3×3的大小,但是为了能让卷积核看到更大的范围,dilated conv使其成为了可能。dilated conv原论文中的结构如图所示: 
这里写图片描述

上图b可以理解为卷积核大小依然是3×3,但是每个卷积点之间有1个空洞,也就是在绿色7×7区域里面,只有9个红色点位置作了卷积处理,其余点权重为0。这样即使卷积核大小不变,但它看到的区域变得更大了。

空洞卷积dilated convolution动态效果如图: 
这里写图片描述

10、卷积核的形状 

卷积核形状一定是矩形吗?

不是的。Deformable convolution 可变形卷积核 
这里写图片描述

图来自微软亚洲研究院公众号

传统的卷积核一般都是长方形或正方形,但MSRA提出了一个相当反直觉的见解,认为卷积核的形状可以是变化的,变形的卷积核能让它只看感兴趣的图像区域 ,这样识别出来的特征更佳。 
这里写图片描述

图来自微软亚洲研究院公众号。要做到这个操作,可以直接在原来的过滤器前面再加一层过滤器,这层过滤器学习的是下一层卷积核的位置偏移量(offset),这样只是增加了一层过滤器,或者直接把原网络中的某一层过滤器当成学习offset的过滤器,这样实际增加的计算量是相当少的,但能实现可变形卷积核,识别特征的效果更好。详细MSRA的解读可以看这个链接:可变形卷积网络:计算机新“视”界(http://weibo.com/ttarticle/p/show?id=2309404116774126794221)。

全文总结

从上面卷积神经网络这几年的发展历程来说,思维更加新颖,结构更加创新,在原本简单的卷积神经网络上增加了很多的变种,但是不管怎么变化,卷积的本质是不变的,如果我们也想要创新,是不是该从以下几个不同的层面去加以思考呢?

(1)卷积核方面:

大卷积核用多个小卷积核代替;

单一尺寸卷积核用多尺寸卷积核代替;

固定形状卷积核趋于使用可变形卷积核;

使用1×1卷积核(bottleneck结构)。


(2)卷积层通道方面:

标准卷积用depthwise卷积代替;

使用分组卷积;

分组卷积前使用channel shuffle;

通道加权计算。


(3)卷积层连接方面:

使用skip connection,让模型更深;

densely connection,使每一层都融合上其它层的特征输出(DenseNet)

草样年华.jpg

个人微信号.jpg

猜你喜欢

转载自blog.csdn.net/qq_27825451/article/details/84290450