机器人学之3D欧式变换理论与实践

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011178262/article/details/84479181

理论基础

三维空间中的变换主要分为如下几种:

  • 射影变换
  • 仿射变换
  • 相似变换
  • 欧式变换

其性质如下图所示:
3d_transform.png

本文主要介绍欧式变换。

欧式变换

T = [ R t 0 T 1 ] R 4 × 4 \mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}

T 1 = [ R T R T t 0 T 1 ] R 4 × 4 \mathbf{T}^{-1} = \begin{bmatrix} \mathbf{R}^T & -\mathbf{R}^T \cdot \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}

Translate by C -C (align origins), Rotate to align axes:

P c = T P w = R ( P w C ) = R P w R C = R P w + t \begin{aligned} P_c &= \mathbf{T} \cdot P_w \\ &= \mathbf{R} \cdot (P_w - C) \\ &= \mathbf{R} \cdot P_w - \mathbf{R} \cdot C \\ &= \mathbf{R} \cdot P_w + \mathbf{t} \end{aligned}

旋转

旋转矩阵

R = [ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] R 3 × 3 , s . t . R R T = I , d e t ( R ) = 1 \mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}, \quad s.t. \quad \mathbf{RR}^T = \mathbf{I}, det(\mathbf{R}) = 1

旋转向量(轴角)

ξ = α a = l o g ( R ) R 3 \boldsymbol{\xi} = \alpha\mathbf{a} = log(\mathbf{R})^{\vee} \in \mathbb{R}^3

  • 旋转轴:矩阵 R \mathbf{R} 特征值1对应的特征向量(单位矢量)
    a = ξ ξ R 3 \mathbf{a} = \frac{\boldsymbol{\xi}}{||\boldsymbol{\xi}||} \in \mathbb{R}^3

  • 旋转角
    α = ξ = a r c c o s ( t r ( R ) 1 2 ) R \alpha = ||\boldsymbol{\xi}|| = arccos(\frac{tr(\mathbf{R})-1}{2}) \in \mathbb{R}

罗德里格斯公式(Rodrigues’ rotation formula):
R = c o s α I + ( 1 c o s α ) a a T + s i n α a \mathbf{R} = cos\alpha \mathbf{I} + (1-cos\alpha) \mathbf{aa}^T + sin\alpha \mathbf{a}^{\wedge}

单位四元数

2D旋转单位复数 可用来表示2D旋转。

z = a + b i = r ( c o s θ + s i n θ i ) = e θ i , r = z = 1 z = a + b\vec{i} = r ( cos\theta + sin\theta\vec{i} ) = e^{\theta \vec{i}}, r = ||z||=1

3D旋转单位四元数 才可表示3D旋转,四元数是复数的扩充,在表示旋转前需要进行 归一化

q = [ ε η ] s . t . q 2 = 1 \mathbf{q} = \begin{bmatrix} \boldsymbol\varepsilon \\ \eta \end{bmatrix} \quad s.t. \quad ||\mathbf{q}||_2 = 1

where

η = c o s α 2 , ε = a s i n α 2 = [ a 1 s i n α 2 a 2 s i n α 2 a 3 s i n α 2 ] = [ ε 1 ε 2 ε 3 ] \eta = cos\frac{\alpha}{2}, \quad \boldsymbol\varepsilon = \mathbf{a} sin\frac{\alpha}{2} = \begin{bmatrix} a_1sin \frac{\alpha}{2} \\ a_2sin \frac{\alpha}{2} \\ a_3sin \frac{\alpha}{2} \end{bmatrix} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{bmatrix}

and

a 2 = 1 , η 2 + ε 1 2 + ε 2 2 + ε 3 2 = 1 ||\mathbf{a}||_2 = 1, \quad \eta^2 + \varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 = 1

四元数可以在 保证效率 的同时,减小矩阵1/4的内存占有量,同时又能 避免欧拉角的万向锁问题

欧拉角

旋转矩阵可以可以分解为绕各自轴对应旋转矩阵的乘积:

R = R 1 R 2 R 3 \mathbf{R} = \mathbf{R}_1 \mathbf{R}_2 \mathbf{R}_3

根据绕轴的不同,欧拉角共分为两大类,共12种,如下图(基于 右手系)所示:
euler_angles_12.png

以上不同旋转轴合成的旋转矩阵,每一种都可以看成 同一旋转矩阵的两种不同物理变换

  • 固定轴 旋转
  • 动轴 旋转

Z 1 Y 2 X 3 Z_1Y_2X_3 进行为例,旋转矩阵表示为 R = R z R y R x \mathbf{R} = \mathbf{R}_z \mathbf{R}_y \mathbf{R}_x ,说明:

  • 固定轴 旋转:以初始坐标系作为固定坐标系,分别先后绕固定坐标系的X、Y、Z轴 旋转;
  • 动轴 旋转:先绕 初始Z轴 旋转,再绕 变换后的Y轴 旋转,最后绕 变换后的X轴 旋转

即 绕 固定坐标轴的XYZ绕运动坐标轴的ZYX 的旋转矩阵是一样的。

我们经常用的欧拉角一般就是 Z 1 Y 2 X 3 Z_1Y_2X_3 轴序的 yaw-pitch-roll,如下图所示:
rpy_plane.png

对应的旋转矩阵为

R = R z R y R x = R ( θ y a w ) R ( θ p i t c h ) R ( θ r o l l ) \mathbf{R} = \mathbf{R}_z \mathbf{R}_y \mathbf{R}_x = \mathbf{R}(\theta_{yaw}) \mathbf{R}(\theta_{pitch}) \mathbf{R}(\theta_{roll})

其逆矩阵为:

R 1 = ( R z R y R x ) 1 = R x 1 R y 1 R z 1 = R ( θ r o l l ) R ( θ p i t c h ) R ( θ y a w ) \begin{aligned} \mathbf{R}^{-1} &= (\mathbf{R}_z \mathbf{R}_y \mathbf{R}_x)^{-1} \\ &= \mathbf{R}_x^{-1} \mathbf{R}_y^{-1} \mathbf{R}_z^{-1} \\ &= \mathbf{R}(-\theta_{roll}) \mathbf{R}(-\theta_{pitch}) \mathbf{R}(-\theta_{yaw}) \end{aligned}

上面 R x R y R z \mathbf{R}_x \mathbf{R}_y \mathbf{R}_z Cosine Matrix 的形式表示为(右手系):

R x ( θ ) = [ 1 0 0 0 c o s ( θ ) s i n ( θ ) 0 s i n ( θ ) c o s ( θ ) ] \mathbf{R}_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & cos(\theta) & -sin(\theta) \\ 0 & sin(\theta) & cos(\theta) \end{bmatrix}

R y ( θ ) = [ c o s ( θ ) 0 s i n ( θ ) 0 1 0 s i n ( θ ) 0 c o s ( θ ) ] \mathbf{R}_y(\theta) = \begin{bmatrix} cos(\theta) & 0 & sin(\theta) \\ 0 & 1 & 0 \\ -sin(\theta) & 0 & cos(\theta) \end{bmatrix}

R z ( θ ) = [ c o s ( θ ) s i n ( θ ) 0 s i n ( θ ) c o s ( θ ) 0 0 0 1 ] \mathbf{R}_z(\theta) = \begin{bmatrix} cos(\theta) & -sin(\theta) & 0 \\ sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}

旋转转换

平移

t = [ x y z ] T R 3 \mathbf{t} = \begin{bmatrix} x & y & z \end{bmatrix}^T \in \mathbb{R}^3

李群和李代数

特殊正交群 S O ( 3 ) SO(3)

S O ( 3 ) = { R R 3 × 3 R R T = I , d e t ( R ) = 1 } SO(3) = \Bigg\{ \mathbf{R} \in \mathbb{R}^{3 \times 3} \Bigg| \mathbf{RR}^T = \mathbf{I}, det(\mathbf{R}) = 1 \Bigg\}

李代数 s o ( 3 ) \mathfrak{so}(3)

s o ( 3 ) = { Φ = ϕ R 3 × 3 ϕ R 3 } \mathfrak{so}(3) = \Bigg\{ \boldsymbol{\Phi} = \boldsymbol{\phi}^{\wedge} \in \mathbb{R}^{3 \times 3} \Bigg| \boldsymbol{\phi} \in \mathbb{R}^3 \Bigg\}

where

ϕ = [ ϕ 1 ϕ 2 ϕ 3 ] = [ 0 ϕ 3 ϕ 2 ϕ 3 0 ϕ 1 ϕ 2 ϕ 1 0 ] R 3 × 3 \boldsymbol{\phi}^{\wedge} = \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{bmatrix}^{\wedge} = \begin{bmatrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}

指数映射: R = e x p ( ϕ ) I + ϕ \mathbf{R} = exp(\boldsymbol{\phi}^{\wedge}) {\approx} \mathbf{I} + \boldsymbol{\phi}^{\wedge} (first-order approximation)

对数映射: ϕ = l o g ( R ) \boldsymbol{\phi} = log(\mathbf{R})^{\vee}

特殊欧式群 S E ( 3 ) SE(3)

S E ( 3 ) = { T = [ R t 0 T 1 ] R 4 × 4 R S O ( 3 ) , t R 3 } SE(3) = \Bigg\{ \mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \in \mathbb{R}^{4 \times 4} \Bigg| \mathbf{R} \in SO(3), \mathbf{t} \in \mathbb{R}^{3} \Bigg\}

李代数 s e ( 3 ) \mathfrak{se}(3)

s e ( 3 ) = { Ξ = ξ R 4 × 4 ξ R 6 } \mathfrak{se}(3) = \Bigg\{ \boldsymbol{\Xi} = \boldsymbol{\xi}^{\wedge} \in \mathbb{R}^{4 \times 4} \Bigg| \boldsymbol{\xi} \in \mathbb{R}^6 \Bigg\}

where

ξ = [ ρ ϕ ] = [ ϕ ρ 0 T , 0 ] R 4 × 4 , ρ , ϕ R 3 \boldsymbol{\xi}^{\wedge} = \begin{bmatrix} \boldsymbol{\rho} \\ \boldsymbol{\phi} \end{bmatrix}^{\wedge} = \begin{bmatrix} \boldsymbol{\phi}^{\wedge} & \boldsymbol{\rho} \\ \mathbf{0}^T, & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4}, \quad \boldsymbol{\rho},\boldsymbol{\phi} \in \mathbb{R}^3

指数映射: T = e x p ( ξ ) \mathbf{T} = exp(\boldsymbol{\xi}^{\wedge})
对数映射: ξ = l o g ( T ) \boldsymbol{\xi} = log(\mathbf{T})^{\vee}

坐标系手性

坐标系的手性主要分为 右手系左手系,主要通过以下两种方法区分(右手系):

  • 3 finger method
    right_handed_3fingers.png
  • Curling method
    right_handed_curling.png

另外,不同的几何编程库所基于的坐标系的手性会有所不同

  • Eigen: 右手系
  • OpenGL: 右手系
  • Unity3D: 左手系
  • ROS tf: 右手系

注意事项

区分 点的变换 和 坐标系本身的变换

P a = T A B P b P_a = \mathbf{T}_{AB} \cdot P_b

指的是 将某点在B坐标系中的坐标表示变换为其在A坐标系中的坐标表示,实质是同一点在不同坐标系下的不同坐标表示,即 点的变换;若将A和B坐标系假设为刚体,则B坐标系变换到A坐标系(坐标系本身的变换)的变换矩阵为 T A B 1 \mathbf{T}_{AB}^{-1}

  • 使用传感器(Camera-IMU)标定工具(例如Kalibr)标定出的外参指的是 点的变换
  • ROS中 static_transform_publisher 则是 坐标系本身的变换
    static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period_in_ms
    

在分析多个坐标系的姿态变换时,要注意根据点的变换或者坐标系的变换确定矩阵左乘还是右乘:

  • 点的变换:矩阵相乘 从右到左,即 矩阵左乘
  • 坐标系的变换:矩阵相乘 从左到右,即 矩阵右乘

区分 绕定轴旋转 和 绕动轴旋转

注意 右手系 和 左手系

注意 同一刚体中不同坐标系姿态变换的相互表示

以带有IMU的相机模组为例,已知 IMU(坐标系)本身的姿态变换 T B \mathbf{T}^{B} 和 同一模组中Camera到IMU(Body)的坐标系变换 T B C \mathbf{T}_{BC} ,则 该Camera(坐标系)本身的姿态变换为:

C T = T B C T B T B C 1 {}_C\mathbf{T} = \mathbf{T}_{BC} \cdot \mathbf{T}^{B} \cdot \mathbf{T}_{BC}^{-1}

因为上面的变换都是 坐标系的变换,所以矩阵相乘 从左到右,即 矩阵右乘

编程库实践

下面通过示例代码对自己使用过的库进行介绍。

Eigen

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.

Eigen::Matrix3d m3_r_z = Eigen::AngleAxisd(M_PI/2, Eigen::Vector3d(0,0,1)).toRotationMatrix();
Eigen::Quaterniond q_r_z(m3_r_z);

Eigen::Vector3f v3_translation(x, y, z);

Eigen::Quaternion<double> q(w, qx, qy, qz);
Eigen::Matrix3f m3_rotation = q.matrix();

Eigen::Matrix4f m4_transform = Eigen::Matrix4f::Identity();
m4_transform.block<3,1>(0,3) = v3_translation;
m4_transform.block<3,3>(0,0) = m3_rotation;

TooN

Tom’s Object-oriented numerics library, is a set of C++ header files which provide basic linear algebra facilities

Array2SE3:

#include <TooN/TooN.h>
#include <TooN/se3.h>

/**
 * @brief transform array to TooN::SE3
 * @param array array of 3x4 row-major matrix of RT
 * @param se3 TooN::SE3 object
 */
void Tools::Array2SE3(const float *array, SE3<> &se3)
{
    Matrix<3,3> m3Rotation;
    for(int i=0;i<3;i++)
    {
        for(int j=0;j<3;j++)
        {
            m3Rotation[i][j] = array[i*4+j];
        }
    }
    SO3<> so3 = SO3<>(m3Rotation);

    Vector<3> v3Translation;
    v3Translation[0] = array[ 3];
    v3Translation[1] = array[ 7];
    v3Translation[2] = array[11];

    se3.get_rotation()    = so3;
    se3.get_translation() = v3Translation;
}

Sophus

C++ implementation of Lie Groups using Eigen commonly used for 2d and 3d geometric problems (i.e. for Computer Vision or Robotics applications)

#include <iostream>
#include <sophus/se3.hpp>

Eigen::Matrix3d R = Eigen::AngleAxisd(M_PI/2, Eigen::Vector3d(0,0,1)).toRotationMatrix();
Eigen::Quaterniond q(R);

Eigen::Vector3d t(1,0,0);

Sophus::SE3 SE3_Rt(R, t);
Sophus::SE3 SE3_qt(q, t);

typedef Eigen::Matrix<double,6,1> Vector6d;

Vector6d se3 = SE3_Rt.log();

std::cout << "se3 hat = " << std::endl
          << Sophus::SE3::hat(se3) << std::endl;
std::cout <<"se3 hat vee = " << std::endl
          << Sophus::SE3::vee( Sophus::SE3::hat(se3) ).transpose() << std::endl;

Vector6d update_se3;
update_se3.setZero();
update_se3(0,0) = 1e-4d;
Sophus::SE3 SE3_updated = Sophus::SE3::exp(update_se3) * SE3_Rt;
std::cout << "SE3 updated = " << std::endl
          << SE3_updated.matrix() << std::endl;

ROS tf & tf2

tf is a package that lets the user keep track of multiple coordinate frames over time. tf maintains the relationship between coordinate frames in a tree structure buffered in time, and lets the user transform points, vectors, etc between any two coordinate frames at any desired point in time.

#include <Eigen/Geometry>
#include <tf_conversions/tf_eigen.h>
#include <tf2/LinearMath/Quaternion.h>
#include <tf2/LinearMath/Matrix3x3.h>
#include <geometry_msgs/TransformStamped.h>

tf::Transform transform;
transform.setOrigin( tf::Vector3(x, y, z) );
tf::Quaternion q;
q.setRPY(r, p, y);
transform.setRotation(q);

geometry_msgs::Quaternion q_msg;

Eigen::Vector3d v3_r;
tf2::Matrix3x3(tf2::Quaternion(q_msg.x, q_msg.y, q_msg.z, quaternion_imu_.w))
.getRPY(v3_r[0], v3_r[1], v3_r[2]);

tf2::Quaternion q_tf2;
q_tf2.setRPY(v3_r[0], v3_r[1], v3_r[2]);
q_tf2.normalize();

geometry_msgs::TransformStamped tf_stamped;
tf_stamped.transform.rotation.x = q.x();
tf_stamped.transform.rotation.y = q.y();
tf_stamped.transform.rotation.z = q.z();
tf_stamped.transform.rotation.w = q.w();

猜你喜欢

转载自blog.csdn.net/u011178262/article/details/84479181
今日推荐