python turtle 例子 海归绘图

     



 

太阳花


1 # coding=utf-8
2 import turtle
3 import time
4  
5 # 同时设置pencolor="red", fillcolor="yellow"
6 turtle.color("red", "yellow")
7  
8 # 开始填充
9 turtle.begin_fill()
10 for _ in range(50):        # 循环50次, 从0到49
11     turtle.forward(200)    # 前行200
12     turtle.left(170)       # 左转170°
13 # 结束填充
14 turtle.end_fill()
15  
16 # 不会退出, 而是等待
17 turtle.mainloop()

五角星


# coding=utf-8
import turtle
import time turtle.pensize(5) # 线宽 turtle.pencolor("yellow") # 线的眼神 turtle.fillcolor("red") # 填充颜色 def draw_5AnglesShape(): turtle.begin_fill() for _ in range(5): turtle.forward(200) turtle.right(144) turtle.end_fill() time.sleep(2) def draw_word(): # 写文字 turtle.penup() turtle.goto(-150, -120) turtle.color("violet") turtle.write("五角星绘制完毕", font=('Arial', 40, 'normal')) if __name__ == "__main__": draw_5AnglesShape() draw_word() turtle.mainloop()
 

彩色螺旋线


1 # coding=utf-8
2 import turtle
3  
4 from datetime import *
5 import time
6  
7 def doWork():
8     turtle.pensize(2)
9     turtle.bgcolor("black")
10     colors = ["red","yellow","purple","blue"]
11     #turtle.tracer(False)
12     for x in range(400):
13         turtle.forward(2*x)
14         turtle.color(colors[x % 4])
15         turtle.left(91)
16     #turtle.tracer(True)
17     # input()   可以有效解决闪退问题,或者下面的方法    
18  
19 if __name__ == "__main__":
20     doWork()
21     turtle.done();
22  

方形蜘蛛网


# coding=utf-8
import turtle

from datetime import * import time def doWork(t): for x in range(100): t.forward(x) t.left(90) if __name__ == "__main__": t = turtle.Pen() doWork(t) turtle.done()

旋转的海龟


# coding=utf-8
import turtle

from datetime import * import time def doWork(t): for x in range(100): t.forward(x) t.left(91) if __name__ == "__main__": t = turtle.Pen() doWork(t)

彩色的旋转的海龟


# coding=utf-8
import turtle

from datetime import * import time def doWork(t): colors = ["red", "yellow", "blue", "green"] for x in range(100): t.pencolor(colors[x%4]) t.forward(x) t.left(91) if __name__ == "__main__": t = turtle.Pen() doWork(t)

彩色的旋转的海龟2


# coding=utf-8
import turtle

from datetime import * import time def doWork(t): turtle.bgcolor("black") # 修改背景颜色 sides = 6 colors = ["red", "yellow", "blue", "green"] for x in range(100): t.pencolor(colors[x%4]) t.forward(x * 3/sides + x) t.left(360/sides + 1) t.width(x*sides/200) if __name__ == "__main__": t = turtle.Pen() doWork(t)

 

蟒蛇绘制


1 # coding=utf-8
2 import turtle
3 from datetime import *
4 import time
5    
6 if __name__ == "__main__":
7     # 屏幕大小为(650,300)
8     turtle.setup(650,300)
9     turtle.penup()
10     turtle.fd(-250)
11     turtle.pendown()
12     turtle.pensize(10)
13     turtle.pencolor("yellow")
14     turtle.seth(-40)
15     for i in range(4):
16         turtle.circle(40,80)
17         turtle.circle(-40,80)
18     turtle.circle(40,80/2)
19     turtle.fd(40)
20     turtle.circle(16,180)
21     turtle.fd(40 * 2/3)
22     turtle.done()

图形绘制


1 # coding=utf-8
2 import turtle
3 from datetime import *
4 import time
5  
6 if __name__ == "__main__":
7     turtle.pensize(3)
8     turtle.penup()
9     turtle.goto(-200,-50)
10     turtle.pendown()
11     turtle.begin_fill()
12     turtle.color("red")
13     turtle.circle(40, steps=3)
14     turtle.end_fill()
15  
16  
17     turtle.penup()
18     turtle.goto(-100,-50)
19     turtle.pendown()
20     turtle.begin_fill()
21     turtle.color("blue")
22     turtle.circle(40, steps=4)
23     turtle.end_fill()
24  
25     turtle.penup()
26     turtle.goto(0,-50)
27     turtle.pendown()
28     turtle.begin_fill()
29     turtle.color("green")
30     turtle.circle(40, steps=5)
31     turtle.end_fill()
32  
33     turtle.penup()
34     turtle.goto(100,-50)
35     turtle.pendown()
36     turtle.begin_fill()
37     turtle.color("yellow")
38     turtle.circle(40, steps=6)
39     turtle.end_fill()
40  
41     turtle.penup()
42     turtle.goto(200,-50)
43     turtle.pendown()
44     turtle.begin_fill()
45     turtle.color("purple")
46     turtle.circle(40)
47     turtle.end_fill()
48  
49     turtle.color("green")
50     turtle.penup()
51     turtle.goto(-100,50)
52     turtle.pendown()
53     turtle.write( u"彩色简单图形".encode("utf-8"),
54                   font = ("Times", 18, "bold") )
55     turtle.hideturtle()
56  
57     turtle.done()
58  

三角塔的绘制


#encoding: utf8



import turtle



stepSize = 30 def draw1GreenTriangle(): """ 画有一个绿色的小小三角形 从图片上看, 整个图形就是由27个小三角形组成的 """ global stepSize turtle.color("black", "green") # 笔的颜色的黑色, 填充是绿色  turtle.begin_fill() # 开始填充 turtle.setheading(240) # 头向左下 turtle.forward(stepSize) # 移动指定个单位 turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize) # 移动10个单位 turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize) # 移动10个单位 turtle.end_fill() # 结束填充 def draw3GreenTriangle(): """ 就是画三个小三角形 原图片可以看做是9个这样的3个三角形组成的 """ draw1GreenTriangle(); turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize) # 移动指定单位 draw1GreenTriangle(); # 画第二个三角形 turtle.setheading(0) # 头向左 turtle.forward(stepSize) # 移动指定单位 draw1GreenTriangle(); # 画第三个三角形 turtle.forward(stepSize) # 移动指定个单位 def draw9GreenTriangle(): """ 就是画九个三角形 原图片可以看做是3个这样的9个三角形组成的 """ draw3GreenTriangle() # 画第一个三个小三角形 turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize*2) # 移动2个指定单位 draw3GreenTriangle() # 画第二个三个小三角形 turtle.setheading(0) # 头向左 turtle.forward(stepSize*2) # 移动2个指定单位 draw3GreenTriangle() # 画第三个三个小三角形 turtle.forward(stepSize*2) # 移动2个指定单位 def draw27GreenTriangle(): """ 画出最终图像, 就是27个小三角形, 其由三个draw9GreenTriangle()的结果组成 """ draw9GreenTriangle() turtle.left(120) # 逆时针旋转120度 turtle.forward(stepSize*4) # 移动4个指定单位 draw9GreenTriangle() turtle.setheading(0) # 头向左 turtle.forward(stepSize*4) # 移动4个指定单位 draw9GreenTriangle() if __name__ == "__main__": draw27GreenTriangle(); turtle.mainloop()

小猪佩奇


# coding:utf-8

import turtle as t def drawNose(): # 配置画笔属性 t.pensize(4) t.hideturtle() t.colormode(255) t.color((255,155,192),"pink") t.setup(840,500) t.speed(10) # 绘制鼻圈 t.pu() t.goto(-100,100) t.pd() t.seth(-30) t.begin_fill() a=0.4 for i in range(120): if 0<=i<30 or 60<=i<90: a=a+0.08 t.lt(3) #向左转3度 t.fd(a) #向前走a的步长 else: a=a-0.08 t.lt(3) t.fd(a) t.end_fill() # 绘制鼻孔 t.pu() t.seth(90) t.fd(25) t.seth(0) t.fd(10) t.pd() t.pencolor(255,155,192) t.seth(10) t.begin_fill() t.circle(5) t.color(160,82,45) t.end_fill() t.pu() t.seth(0) t.fd(20) t.pd() t.pencolor(255,155,192) t.seth(10) t.begin_fill() t.circle(5) t.color(160,82,45) t.end_fill() def drawHead(): # 绘制吹风机头 t.color((255,155,192),"pink") t.pu() t.seth(90) t.fd(41) t.seth(0) t.fd(0) t.pd() t.begin_fill() t.seth(180) t.circle(300,-30) t.circle(100,-60) t.circle(80,-100) t.circle(150,-20) t.circle(60,-95) t.seth(161) t.circle(-300,15) t.pu() t.goto(-100,100) t.pd() t.seth(-30) a=0.4 for i in range(60): if 0<=i<30 or 60<=i<90: a=a+0.08 t.lt(3) #向左转3度 t.fd(a) #向前走a的步长 else: a=a-0.08 t.lt(3) t.fd(a) t.end_fill() def drawEar(): # 绘制耳朵 t.color((255,155,192),"pink") t.pu() t.seth(90) t.fd(-7) t.seth(0) t.fd(70) t.pd() t.begin_fill() t.seth(100) t.circle(-50,50) t.circle(-10,120) t.circle(-50,54) t.end_fill() t.pu() t.seth(90) t.fd(-12) t.seth(0) t.fd(30) t.pd() t.begin_fill() t.seth(100) t.circle(-50,50) t.circle(-10,120) t.circle(-50,56) t.end_fill()def drawEye():# 绘制眼睛 t.color((255,155,192),"white") t.pu() t.seth(90) t.fd(-20) t.seth(0) t.fd(-95) t.pd() t.begin_fill() t.circle(15) t.end_fill() t.color("black") t.pu() t.seth(90) t.fd(12) t.seth(0) t.fd(-3) t.pd() t.begin_fill() t.circle(3) t.end_fill() t.color((255,155,192),"white") t.pu() t.seth(90) t.fd(-25) t.seth(0) t.fd(40) t.pd() t.begin_fill() t.circle(15) t.end_fill() t.color("black") t.pu() t.seth(90) t.fd(12) t.seth(0) t.fd(-3) t.pd() t.begin_fill() t.circle(3) t.end_fill()def drawCheek():# 绘制腮 t.color((255,155,192)) t.pu() t.seth(90) t.fd(-95) t.seth(0) t.fd(65) t.pd() t.begin_fill() t.circle(30) t.end_fill()def drawMouth():# 绘制嘴 t.color(239,69,19) t.pu() t.seth(90) t.fd(15) t.seth(0) t.fd(-100) t.pd() t.seth(-80) t.circle(30,40) t.circle(40,80)def drawFigure():# 绘制体型 t.color("red",(255,99,71)) t.pu() t.seth(90) t.fd(-20) t.seth(0) t.fd(-78) t.pd() t.begin_fill() t.seth(-130) t.circle(100,10) t.circle(300,30) t.seth(0) t.fd(230) t.seth(90) t.circle(300,30) t.circle(100,3) t.color((255,155,192),(255,100,100)) t.seth(-135) t.circle(-80,63) t.circle(-150,24) t.end_fill()def drawHand():# 绘制小手 t.color((255,155,192)) t.pu() t.seth(90) t.fd(-40) t.seth(0) t.fd(-27) t.pd() t.seth(-160) t.circle(300,15) t.pu() t.seth(90) t.fd(15) t.seth(0) t.fd(0) t.pd() t.seth(-10) t.circle(-20,90) t.pu() t.seth(90) t.fd(30) t.seth(0) t.fd(237) t.pd() t.seth(-20) t.circle(-300,15) t.pu() t.seth(90) t.fd(20) t.seth(0) t.fd(0) t.pd() t.seth(-170) t.circle(20,90)def drawLeg():# 绘制腿脚 t.pensize(10) t.color((240,128,128)) t.pu() t.seth(90) t.fd(-75) t.seth(0) t.fd(-180) t.pd() t.seth(-90) t.fd(40) t.seth(-180) t.color("black") t.pensize(15) t.fd(20) t.pensize(10) t.color((240,128,128)) t.pu() t.seth(90) t.fd(40) t.seth(0) t.fd(90) t.pd() t.seth(-90) t.fd(40) t.seth(-180) t.color("black") t.pensize(15) t.fd(20)def drawTail():# 绘制尾巴 t.pensize(4) t.color((255,155,192)) t.pu() t.seth(90) t.fd(70) t.seth(0) t.fd(95) t.pd() t.seth(0) t.circle(70,20) t.circle(10,330) t.circle(70,30)if __name__ =="__main__": drawNose() drawHead() drawEar() drawEye() drawCheek() drawMouth() drawFigure() drawHand() drawLeg() drawTail() t.done()

玫瑰花


#encoding: utf8



from turtle import * import time # 设置屏幕尺寸为600*800 # 窗口位置为(1000,100) setup(600,800,1000, 100) speed(0) penup() seth(90) fd(340) seth(0) pendown() speed(5) begin_fill() fillcolor('red') circle(50,30) for i in range(10): fd(1) left(10) circle(40,40) for i in range(6): fd(1) left(3) circle(80,40) for i in range(20): fd(0.5) left(5) circle(80,45) for i in range(10): fd(2) left(1) circle(80,25) for i in range(20): fd(1) left(4) circle(50,50) time.sleep(0.1) circle(120,55) speed(0) seth(-90) fd(70) right(150) fd(20) left(140) circle(140,90) left(30) circle(160,100) left(130) fd(25) penup() right(150) circle(40,80) pendown() left(115) fd(60) penup() left(180) fd(60) pendown() end_fill() right(120) circle(-50,50) circle(-20,90) speed(1) fd(75) speed(0) circle(90,110) penup() left(162) fd(185) left(170) pendown() circle(200,10) circle(100,40) circle(-52,115) left(20) circle(100,20) circle(300,20) speed(1) fd(250) penup() speed(0) left(180) fd(250) circle(-300,7) right(80) circle(200,5) pendown() left(60) begin_fill() fillcolor('green') circle(-80,100) right(90) fd(10) left(20) circle(-63,127) end_fill() penup() left(50) fd(20) left(180) pendown() circle(200,25) penup() right(150) fd(180) right(40) pendown() begin_fill() fillcolor('green') circle(-100,80) right(150) fd(10) left(60) circle(-80,98) end_fill() penup() left(60) fd(13) left(180) pendown() speed(1) circle(-200,23) exitonclick()

 

 

绘制雪花

科赫曲线是de Rham曲线的特例 
给定线段AB,科赫曲线可以由以下步骤生成 
将线段分成三等份(AC,CD,DB) 
以CD为底,向外(内外随意)画一个等边三角形DMC 
将线段CD移去 
分别对AC,CM,MD,DB重复1~3 


太极阴阳


# coding:utf-8
from turtle import * def yin(radius, color1, color2): width(3) color("black", color1) begin_fill() circle(radius/2., 180) circle(radius, 180) left(180) circle(-radius/2., 180) end_fill() left(90) up() forward(radius*0.35) right(90) down() color(color1, color2) begin_fill() circle(radius*0.15) end_fill() left(90) up() backward(radius*0.35) down() left(90) def main(): reset() yin(200, "black", "white") yin(200, "white", "black") ht() return "Done!" if __name__ == '__main__': main() mainloop()

地球


# coding:utf-8

from turtle import Screen, Turtle, mainloop from time import clock, sleep def mn_eck(p, ne,sz): turtlelist = [p] #create ne-1 additional turtles for i in range(1,ne): q = p.clone() q.rt(360.0/ne) turtlelist.append(q) p = q for i in range(ne): c = abs(ne/2.0-i)/(ne*.7) # let those ne turtles make a step # in parallel: for t in turtlelist: t.rt(360./ne) t.pencolor(1-c,0,c) t.fd(sz) def main(): s = Screen() s.bgcolor("black") p=Turtle() p.speed(0) p.hideturtle() p.pencolor("red") p.pensize(3) s.tracer(36,0) at = clock() mn_eck(p, 36, 19) et = clock() z1 = et-at sleep(1) at = clock() while any([t.undobufferentries() for t in s.turtles()]): for t in s.turtles(): t.undo() et = clock() return "runtime: %.3f sec" % (z1+et-at) if __name__ == '__main__': msg = main() print(msg) mainloop()

两个画布


# coding:utf-8

from turtle import TurtleScreen, RawTurtle, TK def main(): root = TK.Tk() cv1 = TK.Canvas(root, width=300, height=200, bg="#ddffff") cv2 = TK.Canvas(root, width=300, height=200, bg="#ffeeee") cv1.pack() cv2.pack() s1 = TurtleScreen(cv1) s1.bgcolor(0.85, 0.85, 1) s2 = TurtleScreen(cv2) s2.bgcolor(1, 0.85, 0.85) p = RawTurtle(s1) q = RawTurtle(s2) p.color("red", (1, 0.85, 0.85)) p.width(3) q.color("blue", (0.85, 0.85, 1)) q.width(3) for t in p,q: t.shape("turtle") t.lt(36) q.lt(180) for t in p, q: t.begin_fill() for i in range(5): for t in p, q: t.fd(50) t.lt(72) for t in p,q: t.end_fill() t.lt(54) t.pu() t.bk(50) return "EVENTLOOP" if __name__ == '__main__': main() TK.mainloop() # keep window open until user closes it

一棵树


# coding:utf-8

from turtle import Turtle, mainloop from time import clock def tree(plist, l, a, f): """ plist is list of pens l is length of branch a is half of the angle between 2 branches f is factor by which branch is shortened from level to level.""" if l > 3: lst = [] for p in plist: p.forward(l) q = p.clone() p.left(a) q.right(a) lst.append(p) lst.append(q) for x in tree(lst, l*f, a, f): yield None def maketree(): p = Turtle() p.setundobuffer(None) p.hideturtle() p.speed(0) p.getscreen().tracer(30,0) p.left(90) p.penup() p.forward(-210) p.pendown() t = tree([p], 200, 65, 0.6375) for x in t: pass print(len(p.getscreen().turtles())) def main(): a=clock() maketree() b=clock() return "done: %.2f sec." % (b-a) if __name__ == "__main__": msg = main() print(msg) mainloop()

排序


# coding:utf-8
from turtle import * import random class Block(Turtle): def __init__(self, size): self.size = size Turtle.__init__(self, shape="square", visible=False) self.pu() self.shapesize(size * 1.5, 1.5, 2) # square-->rectangle self.fillcolor("black") self.st() def glow(self): self.fillcolor("red") def unglow(self): self.fillcolor("black") def __repr__(self): return "Block size: {0}".format(self.size) class Shelf(list): def __init__(self, y): "create a shelf. y is y-position of first block" self.y = y self.x = -150 def push(self, d): width, _, _ = d.shapesize() # align blocks by the bottom edge y_offset = width / 2 * 20 d.sety(self.y + y_offset) d.setx(self.x + 34 * len(self)) self.append(d) def _close_gap_from_i(self, i): for b in self[i:]: xpos, _ = b.pos() b.setx(xpos - 34) def _open_gap_from_i(self, i): for b in self[i:]: xpos, _ = b.pos() b.setx(xpos + 34) def pop(self, key): b = list.pop(self, key) b.glow() b.sety(200) self._close_gap_from_i(key) return b def insert(self, key, b): self._open_gap_from_i(key) list.insert(self, key, b) b.setx(self.x + 34 * key) width, _, _ = b.shapesize() # align blocks by the bottom edge y_offset = width / 2 * 20 b.sety(self.y + y_offset) b.unglow() def isort(shelf): length = len(shelf) for i in range(1, length): hole = i while hole > 0 and shelf[i].size < shelf[hole - 1].size: hole = hole - 1 shelf.insert(hole, shelf.pop(i)) return def ssort(shelf): length = len(shelf) for j in range(0, length - 1): imin = j for i in range(j + 1, length): if shelf[i].size < shelf[imin].size: imin = i if imin != j: shelf.insert(j, shelf.pop(imin))def partition(shelf, left, right, pivot_index): pivot = shelf[pivot_index] shelf.insert(right, shelf.pop(pivot_index)) store_index = left for i in range(left, right):# range is non-inclusive of ending valueif shelf[i].size < pivot.size: shelf.insert(store_index, shelf.pop(i)) store_index = store_index +1 shelf.insert(store_index, shelf.pop(right))# move pivot to correct positionreturn store_index def qsort(shelf, left, right):if left < right: pivot_index = left pivot_new_index = partition(shelf, left, right, pivot_index) qsort(shelf, left, pivot_new_index -1) qsort(shelf, pivot_new_index +1, right)def randomize(): disable_keys() clear() target = list(range(10)) random.shuffle(target)for i, t in enumerate(target):for j in range(i, len(s)):if s[j].size == t +1: s.insert(i, s.pop(j)) show_text(instructions1) show_text(instructions2, line=1) enable_keys()def show_text(text, line=0): line =20* line goto(0,-250- line) write(text, align="center", font=("Courier",16,"bold"))def start_ssort(): disable_keys() clear() show_text("Selection Sort") ssort(s) clear() show_text(instructions1) show_text(instructions2, line=1) enable_keys()def start_isort(): disable_keys() clear() show_text("Insertion Sort") isort(s) clear() show_text(instructions1) show_text(instructions2, line=1) enable_keys()def start_qsort(): disable_keys() clear() show_text("Quicksort") qsort(s,0, len(s)-1) clear() show_text(instructions1) show_text(instructions2, line=1) enable_keys()def init_shelf():global s s =Shelf(-200) vals =(4,2,8,9,1,5,10,3,7,6)for i in vals: s.push(Block(i))def disable_keys(): onkey(None,"s") onkey(None,"i") onkey(None,"q") onkey(None,"r")def enable_keys(): onkey(start_isort,"i") onkey(start_ssort,"s") onkey(start_qsort,"q") onkey(randomize,"r") onkey(bye,"space")def main(): getscreen().clearscreen() ht(); penup() init_shelf() show_text(instructions1) show_text(instructions2, line=1) enable_keys() listen()return"EVENTLOOP" instructions1 ="press i for insertion sort, s for selection sort, q for quicksort" instructions2 ="spacebar to quit, r to randomize"if __name__=="__main__": msg = main() mainloop()

圆舞曲


1 # coding:utf-8
2  
3 from turtle import *
4  
5 def stop():
6     global running
7     running = False
8  
9 def main():
10     global running
11     clearscreen()
12     bgcolor("gray10")
13     tracer(False)
14     shape("triangle")
15     f =   0.793402
16     phi = 9.064678
17     s = 5
18     c = 1
19     # create compound shape
20     sh = Shape("compound")
21     for i in range(10):
22         shapesize(s)
23         p =get_shapepoly()
24         s *= f
25         c *= f
26         tilt(-phi)
27         sh.addcomponent(p, (c, 0.25, 1-c), "black")
28     register_shape("multitri", sh)
29     # create dancers
30     shapesize(1)
31     shape("multitri")
32     pu()
33     setpos(0, -200)
34     dancers = []
35     for i in range(180):
36         fd(7)
37         tilt(-4)
38         lt(2)
39         update()
40         if i % 12 == 0:
41             dancers.append(clone())
42     home()
43     # dance
44     running = True
45     onkeypress(stop)
46     listen()
47     cs = 1
48     while running:
49         ta = -4
50         for dancer in dancers:
51             dancer.fd(7)
52             dancer.lt(2)
53             dancer.tilt(ta)
54             ta = -4 if ta > 0 else 2
55         if cs < 180:
56             right(4)
57             shapesize(cs)
58             cs *= 1.005
59         update()
60     return "DONE!"
61  
62 if __name__=='__main__':
63     print(main())
64     mainloop()
65  

地球与行星


# coding:utf-8

from turtle import Shape, Turtle, mainloop, Vec2D as Vec G = 8 class GravSys(object): def __init__(self): self.planets = [] self.t = 0 self.dt = 0.01 def init(self): for p in self.planets: p.init() def start(self): for i in range(10000): self.t += self.dt for p in self.planets: p.step() class Star(Turtle): def __init__(self, m, x, v, gravSys, shape): Turtle.__init__(self, shape=shape) self.penup() self.m = m self.setpos(x) self.v = v gravSys.planets.append(self) self.gravSys = gravSys self.resizemode("user") self.pendown() def init(self): dt = self.gravSys.dt self.a = self.acc() self.v = self.v + 0.5*dt*self.a def acc(self): a = Vec(0,0) for planet in self.gravSys.planets: if planet != self: v = planet.pos()-self.pos() a += (G*planet.m/abs(v)**3)*v return a def step(self): dt = self.gravSys.dt self.setpos(self.pos() + dt*self.v) if self.gravSys.planets.index(self) != 0: self.setheading(self.towards(self.gravSys.planets[0])) self.a = self.acc() self.v = self.v + dt*self.a ## create compound yellow/blue turtleshape for planets def main(): s = Turtle() s.reset() s.getscreen().tracer(0,0) s.ht() s.pu() s.fd(6) s.lt(90) s.begin_poly() s.circle(6, 180) s.end_poly() m1 = s.get_poly() s.begin_poly() s.circle(6,180) s.end_poly() m2 = s.get_poly() planetshape = Shape("compound") planetshape.addcomponent(m1,"orange") planetshape.addcomponent(m2,"blue") s.getscreen().register_shape("planet", planetshape) s.getscreen().tracer(1,0) ## setup gravitational system gs = GravSys() sun = Star(1000000, Vec(0,0),Vec(0,-2.5), gs,"circle") sun.color("yellow") sun.shapesize(1.8) sun.pu() earth =Star(12500,Vec(210,0),Vec(0,195), gs,"planet") earth.pencolor("green") earth.shapesize(0.8) moon =Star(1,Vec(220,0),Vec(0,295), gs,"planet") moon.pencolor("blue") moon.shapesize(0.5) gs.init() gs.start()return"Done!"if __name__ =='__main__': main() mainloop()

细胞分裂


 

1 # coding:utf-8
2  
3 from turtle import *
4 from math import cos, pi
5 from time import clock, sleep
6  
7 f = (5**0.5-1)/2.0   # (sqrt(5)-1)/2 -- golden ratio
8 d = 2 * cos(3*pi/10)
9  
10 def kite(l):
11     fl = f * l
12     lt(36)
13     fd(l)
14     rt(108)
15     fd(fl)
16     rt(36)
17     fd(fl)
18     rt(108)
19     fd(l)
20     rt(144)
21  
22 def dart(l):
23     fl = f * l
24     lt(36)
25     fd(l)
26     rt(144)
27     fd(fl)
28     lt(36)
29     fd(fl)
30     rt(144)
31     fd(l)
32     rt(144)
33  
34 def inflatekite(l, n):
35     if n == 0:
36         px, py = pos()
37         h, x, y = int(heading()), round(px,3), round(py,3)
38         tiledict[(h,x,y)] = True
39         return
40     fl = f * l
41     lt(36)
42     inflatedart(fl, n-1)
43     fd(l)
44     rt(144)
45     inflatekite(fl, n-1)
46     lt(18)
47     fd(l*d)
48     rt(162)
49     inflatekite(fl, n-1)
50     lt(36)
51     fd(l)
52     rt(180)
53     inflatedart(fl, n-1)
54     lt(36)
55  
56 def inflatedart(l, n):
57     if n == 0:
58         px, py = pos()
59         h, x, y = int(heading()), round(px,3), round(py,3)
60         tiledict[(h,x,y)] = False
61         return
62     fl = f * l
63     inflatekite(fl, n-1)
64     lt(36)
65     fd(l)
66     rt(180)
67     inflatedart(fl, n-1)
68     lt(54)
69     fd(l*d)
70     rt(126)
71     inflatedart(fl, n-1)
72     fd(l)
73     rt(144)
74  
75 def draw(l, n, th=2):
76     clear()
77     l = l * f**n
78     shapesize(l/100.0, l/100.0, th)
79     for k in tiledict:
80         h, x, y = k
81         setpos(x, y)
82         setheading(h)
83         if tiledict[k]:
84             shape("kite")
85             color("black", (0, 0.75, 0))
86         else:
87             shape("dart")
88             color("black", (0.75, 0, 0))
89         stamp()
90  
91 def sun(l, n):
92     for i in range(5):
93         inflatekite(l, n)
94         lt(72)
95  
96 def star(l,n):
97     for i in range(5):
98         inflatedart(l, n)
99         lt(72)
100  
101 def makeshapes():
102     tracer(0)
103     begin_poly()
104     kite(100)
105     end_poly()
106     register_shape("kite", get_poly())
107     begin_poly()
108     dart(100)
109     end_poly()
110     register_shape("dart", get_poly())
111     tracer(1)
112  
113 def start():
114     reset()
115     ht()
116     pu()
117     makeshapes()
118     resizemode("user")
119  
120 def test(l=200, n=4, fun=sun, startpos=(0,0), th=2):
121     global tiledict
122     goto(startpos)
123     setheading(0)
124     tiledict = {}
125     a = clock()
126     tracer(0)
127     fun(l, n)
128     b = clock()
129     draw(l, n, th)
130     tracer(1)
131     c = clock()
132     print("Calculation:   %7.4f s" % (b - a))
133     print("Drawing:  %7.4f s" % (c - b))
134     print("Together: %7.4f s" % (c - a))
135     nk = len([x for x in tiledict if tiledict[x]])
136     nd = len([x for x in tiledict if not tiledict[x]])
137     print("%d kites and %d darts = %d pieces." % (nk, nd, nk+nd))
138  
139 def demo(fun=sun):
140     start()
141     for i in range(8):
142         a = clock()
143         test(300, i, fun)
144         b = clock()
145         t = b - a
146         if t < 2:
147             sleep(2 - t)
148  
149 def main():
150     #title("Penrose-tiling with kites and darts.")
151     mode("logo")
152     bgcolor(0.3, 0.3, 0)
153     demo(sun)
154     sleep(2)
155     demo(star)
156     pencolor("black")
157     goto(0,-200)
158     pencolor(0.7,0.7,1)
159     write("Please wait...",
160           align="center", font=('Arial Black', 36, 'bold'))
161     test(600, 8, startpos=(70, 117))
162     return "Done"
163  
164 if __name__ == "__main__":
165     msg = main()
166     mainloop()
167  

和平


 

1 # coding:utf-8
2  
3 from turtle import *
4  
5 def main():
6     peacecolors = ("red3",  "orange", "yellow",
7                    "seagreen4", "orchid4",
8                    "royalblue1", "dodgerblue4")
9  
10     reset()
11     Screen()
12     up()
13     goto(-320,-195)
14     width(70)
15  
16     for pcolor in peacecolors:
17         color(pcolor)
18         down()
19         forward(640)
20         up()
21         backward(640)
22         left(90)
23         forward(66)
24         right(90)
25  
26     width(25)
27     color("white")
28     goto(0,-170)
29     down()
30  
31     circle(170)
32     left(90)
33     forward(340)
34     up()
35     left(180)
36     forward(170)
37     right(45)
38     down()
39     forward(170)
40     up()
41     backward(170)
42     left(90)
43     down()
44     forward(170)
45     up()
46  
47     goto(0,300) # vanish if hideturtle() is not available ;-)
48     return "Done!"
49  
50 if __name__ == "__main__":
51     main()
52     mainloop()
53  

鼠标追随


1 # coding:utf-8
2  
3 from turtle import *
4  
5 def switchupdown(x=0, y=0):
6     if pen()["pendown"]:
7         end_fill()
8         up()
9     else:
10         down()
11         begin_fill()
12  
13 def changecolor(x=0, y=0):
14     global colors
15     colors = colors[1:]+colors[:1]
16     color(colors[0])
17  
18 def main():
19     global colors
20     shape("circle")
21     resizemode("user")
22     shapesize(.5)
23     width(3)
24     colors=["red", "green", "blue", "yellow"]
25     color(colors[0])
26     switchupdown()
27     onscreenclick(goto,1)
28     onscreenclick(changecolor,2)
29     onscreenclick(switchupdown,3)
30     return "EVENTLOOP"
31  
32 if __name__ == "__main__":
33     msg = main()
34     print(msg)
35     mainloop()
36  

nim


1 # coding:utf-8
2  
3 import turtle
4 import random
5 import time
6  
7 SCREENWIDTH = 640
8 SCREENHEIGHT = 480
9  
10 MINSTICKS = 7
11 MAXSTICKS = 31
12  
13 HUNIT = SCREENHEIGHT // 12
14 WUNIT = SCREENWIDTH // ((MAXSTICKS // 5) * 11 + (MAXSTICKS % 5) * 2)
15  
16 SCOLOR = (63, 63, 31)
17 HCOLOR = (255, 204, 204)
18 COLOR = (204, 204, 255)
19  
20 def randomrow():
21     return random.randint(MINSTICKS, MAXSTICKS)
22  
23 def computerzug(state):
24     xored = state[0] ^ state[1] ^ state[2]
25     if xored == 0:
26         return randommove(state)
27     for z in range(3):
28         s = state[z] ^ xored
29         if s <= state[z]:
30             move = (z, s)
31             return move
32  
33 def randommove(state):
34     m = max(state)
35     while True:
36         z = random.randint(0,2)
37         if state[z] > (m > 1):
38             break
39     rand = random.randint(m > 1, state[z]-1)
40     return z, rand
41  
42  
43 class NimModel(object):
44     def __init__(self, game):
45         self.game = game
46  
47     def setup(self):
48         if self.game.state not in [Nim.CREATED, Nim.OVER]:
49             return
50         self.sticks = [randomrow(), randomrow(), randomrow()]
51         self.player = 0
52         self.winner = None
53         self.game.view.setup()
54         self.game.state = Nim.RUNNING
55  
56     def move(self, row, col):
57         maxspalte = self.sticks[row]
58         self.sticks[row] = col
59         self.game.view.notify_move(row, col, maxspalte, self.player)
60         if self.game_over():
61             self.game.state = Nim.OVER
62             self.winner = self.player
63             self.game.view.notify_over()
64         elif self.player == 0:
65             self.player = 1
66             row, col = computerzug(self.sticks)
67             self.move(row, col)
68             self.player = 0
69  
70     def game_over(self):
71         return self.sticks == [0, 0, 0]
72  
73     def notify_move(self, row, col):
74         if self.sticks[row] <= col:
75             return
76         self.move(row, col)
77  
78  
79 class Stick(turtle.Turtle):
80     def __init__(self, row, col, game):
81         turtle.Turtle.__init__(self, visible=False)
82         self.row = row
83         self.col = col
84         self.game = game
85         x, y = self.coords(row, col)
86         self.shape("square")
87         self.shapesize(HUNIT/10.0, WUNIT/20.0)
88         self.speed(0)
89         self.pu()
90         self.goto(x,y)
91         self.color("white")
92         self.showturtle()
93  
94     def coords(self, row, col):
95         packet, remainder = divmod(col, 5)
96         x = (3 + 11 * packet + 2 * remainder) * WUNIT
97         y = (2 + 3 * row) * HUNIT
98         return x - SCREENWIDTH // 2 + WUNIT // 2, SCREENHEIGHT // 2 - y - HUNIT // 2
99  
100     def makemove(self, x, y):
101         if self.game.state != Nim.RUNNING:
102             return
103         self.game.controller.notify_move(self.row, self.col)
104  
105  
106 class NimView(object):
107     def __init__(self, game):
108         self.game = game
109         self.screen = game.screen
110         self.model = game.model
111         self.screen.colormode(255)
112         self.screen.tracer(False)
113         self.screen.bgcolor((240, 240, 255))
114         self.writer = turtle.Turtle(visible=False)
115         self.writer.pu()
116         self.writer.speed(0)
117         self.sticks = {}
118         for row in range(3):
119             for col in range(MAXSTICKS):
120                 self.sticks[(row, col)] = Stick(row, col, game)
121         self.display("... a moment please ...")
122         self.screen.tracer(True)
123  
124     def display(self, msg1, msg2=None):
125         self.screen.tracer(False)
126         self.writer.clear()
127         if msg2 is not None:
128             self.writer.goto(0, - SCREENHEIGHT // 2 + 48)
129             self.writer.pencolor("red")
130             self.writer.write(msg2, align="center", font=("Courier",18,"bold"))
131         self.writer.goto(0, - SCREENHEIGHT // 2 + 20)
132         self.writer.pencolor("black")
133         self.writer.write(msg1, align="center", font=("Courier",14,"bold"))
134         self.screen.tracer(True)
135  
136     def setup(self):
137         self.screen.tracer(False)
138         for row in range(3):
139             for col in range(self.model.sticks[row]):
140                 self.sticks[(row, col)].color(SCOLOR)
141         for row in range(3):
142             for col in range(self.model.sticks[row], MAXSTICKS):
143                 self.sticks[(row, col)].color("white")
144         self.display("Your turn! Click leftmost stick to remove.")
145         self.screen.tracer(True)
146  
147     def notify_move(self, row, col, maxspalte, player):
148         if player == 0:
149             farbe = HCOLOR
150             for s in range(col, maxspalte):
151                 self.sticks[(row, s)].color(farbe)
152         else:
153             self.display(" ... thinking ...         ")
154             time.sleep(0.5)
155             self.display(" ... thinking ... aaah ...")
156             farbe = COLOR
157             for s in range(maxspalte-1, col-1, -1):
158                 time.sleep(0.2)
159                 self.sticks[(row, s)].color(farbe)
160             self.display("Your turn! Click leftmost stick to remove.")
161  
162     def notify_over(self):
163         if self.game.model.winner == 0:
164             msg2 = "Congrats. You're the winner!!!"
165         else:
166             msg2 = "Sorry, the computer is the winner."
167         self.display("To play again press space bar. To leave press ESC.", msg2)
168  
169     def clear(self):
170         if self.game.state == Nim.OVER:
171             self.screen.clear()
172  
173  
174 class NimController(object):
175  
176     def __init__(self, game):
177         self.game = game
178         self.sticks = game.view.sticks
179         self.BUSY = False
180         for stick in self.sticks.values():
181             stick.onclick(stick.makemove)
182         self.game.screen.onkey(self.game.model.setup, "space")
183         self.game.screen.onkey(self.game.view.clear, "Escape")
184         self.game.view.display("Press space bar to start game")
185         self.game.screen.listen()
186  
187     def notify_move(self, row, col):
188         if self.BUSY:
189             return
190         self.BUSY = True
191         self.game.model.notify_move(row, col)
192         self.BUSY = False
193  
194  
195 class Nim(object):
196     CREATED = 0
197     RUNNING = 1
198     OVER = 2
199     def __init__(self, screen):
200         self.state = Nim.CREATED
201         self.screen = screen
202         self.model = NimModel(self)
203         self.view = NimView(self)
204         self.controller = NimController(self)
205  
206  
207 def main():
208     mainscreen = turtle.Screen()
209     mainscreen.mode("standard")
210     mainscreen.setup(SCREENWIDTH, SCREENHEIGHT)
211     nim = Nim(mainscreen)
212     return "EVENTLOOP"
213  
214 if __name__ == "__main__":
215     main()
216     turtle.mainloop()
217  


 


猜你喜欢

转载自www.cnblogs.com/wutaotaosin/p/10000654.html
今日推荐