Java面试系列总结 :JavaSE高级(上)

1. 说说你对Java中反射的理解

Java 中的反射首先是能够获取到 Java 中要反射类的字节码,获取字节码有三种方法,1.Class.forName(className) 2.类名.class 3.this.getClass()。然后将字节码中的方法,变量,构造函数等映射成相应的Method、Filed、Constructor等类,这些类提供了丰富的方法可以被我们所使用。

2. 写一个ArrayList的动态代理类(笔试题)

final List<String> list = new ArrayList<String>(); 
List<String> proxyInstance =  (List<String>)Proxy.newProxyInstance(list.getClass().getClassLoader(), list.getClass().getInterfaces(),  new InvocationHandler() { 
    @Override 
    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { 
        return method.invoke(list, args); 
    } 
}); 
proxyInstance.add("你好"); 
System.out.println(list); 

3. 动静态代理的区别,什么场景使用?

  • 静态代理通常只代理一个类,动态代理是代理一个接口下的多个实现类。
  • 静态代理事先知道要代理的是什么,而动态代理不知道要代理什么东西,只有在运行时才知道。
  • 动态代理是实现JDK里的 InvocationHandler接口的 invoke方法,但注意的是代理的是接口,也就是你的业务类必须要实现接口,通过Proxy里的newProxyInstance得到代理对象。
  • 还有一种动态代理 CGLIB,代理的是类,不需要业务类继承接口,通过派生的子类来实现代理。通过在运行时,动态修改字节码达到修改类的目的。
  • AOP编程就是基于动态代理实现的,比如著名的Spring框架、Hibernate框架等等都是动态代理的使用例子。

4. 你所知道的设计模式有哪些

Java 中一般认为有 23 种设计模式,我们不需要所有的都会,但是其中常用的几种设计模式应该去掌握。下面列出了所有的设计模式。需要掌握的设计模式我单独列出来了,当然能掌握的越多越好。

总体来说设计模式分为三大类:

  • 创建型模式,共五种:工厂方法模式抽象工厂模式单例模式建造者模式、原型模式。
  • 结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式
  • 行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

5. 单例设计模式

饿汉式:

public class Singleton { 
    // 直接创建对象 
    public static Singleton instance = new Singleton(); 
    // 私有化构造函数 
    private Singleton() { 
    } 
    // 返回对象实例 
    public static Singleton getInstance() { 
        return instance; 
    } 
}

懒汉式:

public class Singleton { 
    // 声明变量 
    private static volatile Singleton singleton = null; 
    // 私有构造函数 
    private Singleton() { 
    } 
    // 提供对外方法 
    public static Singleton getInstance() { 
        if (singleton == null) { 
            synchronized (Singleton.class) { 
                if (singleton == null) { 
                    singleton = new Singleton(); 
                } 
            } 
        }
        return singleton; 
    } 
}

6. 工厂设计模式

工厂方法模式分为三种:

  • 普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。
  • 工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。
  • 静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

普通工厂模式

public interface Sender { 
    public void Send(); 
} 

public class MailSender implements Sender { 
    @Override 
    public void Send() { 
        System.out.println("this is mail sender!"); 
    } 
} 

public class SmsSender implements Sender { 
    @Override 
    public void Send() { 
        System.out.println("this is sms sender!"); 
    } 
} 

public class SendFactory { 
    public Sender produce(String type) { 
        if ("mail".equals(type)) { 
            return new MailSender(); 
        } else if ("sms".equals(type)) { 
            return new SmsSender(); 
        } else { 
            System.out.println("请输入正确的类型!"); 
            return null; 
        } 
    } 
} 

工厂方法模式

该模式是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而工厂方法模式是提供多个工厂方法,分别创建对象。

public class SendFactory { 
    public Sender produceMail(){   
        return new MailSender();   
    }   
    public Sender produceSms(){   
        return new SmsSender();   
    }   
}  

public class FactoryTest { 
    public static void main(String[] args) { 
        SendFactory factory = new SendFactory(); 
        Sender sender = factory.produceMail(); 
        sender.send(); 
    }
}

静态工厂方法模式

将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

public class SendFactory { 
    public static Sender produceMail(){   
        return new MailSender();   
    }   
    public static Sender produceSms(){   
        return new SmsSender();   
    }   
}  

public class FactoryTest { 
    public static void main(String[] args) { 
        SendFactory factory = SendFactory.produceMail(); 
        sender.send(); 
    }
}

抽象工厂模式

工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。

public interface Provider { 
    public Sender produce(); 
}

public interface Sender { 
    public void send(); 
} 

public class MailSender implements Sender { 
    @Override 
    public void send() { 
        System.out.println("this is mail sender!"); 
    } 
}

public class SmsSender implements Sender { 
    @Override 
    public void send() { 
        System.out.println("this is sms sender!"); 
    } 
} 

public class SendSmsFactory implements Provider { 
    @Override 
    public Sender produce() { 
        return new SmsSender(); 
    } 
}

public class SendMailFactory implements Provider { 
    @Override 
    public Sender produce() { 
        return new MailSender(); 
    } 
} 

public class Test { 
    public static void main(String[] args) { 
        Provider provider = new SendMailFactory(); 
        Sender sender = provider.produce(); 
        sender.send(); 
    } 
} 

7. 建造者模式

工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的 Test 结合起来得到的。

public class Builder { 
    private List<Sender> list = new ArrayList<Sender>(); 
    public void produceMailSender(int count) { 
        for (int i = 0; i < count; i++) { 
            list.add(new MailSender()); 
        }
    } 
    public void produceSmsSender(int count) { 
        for (int i = 0; i < count; i++) { 
            list.add(new SmsSender()); 
        } 
    }
}
public class TestBuilder { 
    public static void main(String[] args) { 
        Builder builder = new Builder(); 
        builder.produceMailSender(10); 
    } 
}

8. 适配器设计模式

适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。

类的适配器模式

public class Source { 
    public void method1() { 
        System.out.println("this is original method!"); 
    } 
}

public interface Targetable { 
    /* 与原类中的方法相同 */ 
    public void method1(); 
    /* 新类的方法 */ 
    public void method2(); 
} 

public class Adapter extends Source implements Targetable { 
    @Override 
    public void method2() { 
        System.out.println("this is the targetable method!");         
    }
} 

public class AdapterTest { 
    public static void main(String[] args) { 
        Targetable target = new Adapter(); 
        target.method1(); 
        target.method2(); 
    } 
}

对象的适配器模式

基本思路和类的适配器模式相同,只是将 Adapter 类作修改,这次不继承 Source 类,而是持有 Source 类的实例,以达到解决兼容性的问题。

public class Wrapper implements Targetable { 
    private Source source; 
    public Wrapper(Source source) { 
        super(); 
        this.source = source; 
    } 
    @Override 
    public void method2() { 
        System.out.println("this is the targetable method!"); 
    } 
    @Override 
    public void method1() { 
        source.method1(); 
    }
} 

public class AdapterTest {  
    public static void main(String[] args) {   
        Source source = new Source();   
        Targetable target = new Wrapper(source);   
        target.method1();   
        target.method2();   
    }   
}

接口的适配器模式

接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。

9. 装饰模式(Decorator)

顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例。

public interface Sourceable { 
    public void method(); 
} 

public class Source implements Sourceable { 
    @Override 
    public void method() { 
        System.out.println("the original method!"); 
    } 
} 

public class Decorator implements Sourceable { 
    private Sourceable source; 
    public Decorator(Sourceable source) { 
        super(); 
        this.source = source; 
    } 
    @Override 
    public void method() {
        System.out.println("before decorator!"); 
        source.method(); 
        System.out.println("after decorator!"); 
    } 
}

public class DecoratorTest { 
    public static void main(String[] args) { 
        Sourceable source = new Source(); 
        Sourceable obj = new Decorator(source); 
        obj.method(); 
    } 
} 

10. 策略模式(strategy)

策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数。策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。

public interface ICalculator {
    public int calculate(String exp); 
} 

public class Minus extends AbstractCalculator implements ICalculator { 
    @Override 
    public int calculate(String exp) { 
        int arrayInt[] = split(exp, "-"); 
        return arrayInt[0] - arrayInt[1]; 
    } 
} 

public class Plus extends AbstractCalculator implements ICalculator { 
    @Override 
    public int calculate(String exp) { 
        int arrayInt[] = split(exp, "\\+"); 
        return arrayInt[0] + arrayInt[1]; 
    } 
} 

public class AbstractCalculator { 
    public int[] split(String exp, String opt) { 
        String array[] = exp.split(opt); 
        int arrayInt[] = new int[2]; 
        arrayInt[0] = Integer.parseInt(array[0]); 
        arrayInt[1] = Integer.parseInt(array[1]); 
        return arrayInt; 
    } 
}

public class StrategyTest { 
    public static void main(String[] args) { 
        String exp = "2+8"; 
        ICalculator cal = new Plus(); 
        result = cal.calculate(exp); 
        System.out.println(result); 
    } 
} 
 

11. 观察者模式(Observer)

观察者模式很好理解,类似于邮件订阅和 RSS 订阅,当我们浏览一些博客或 wiki 时,经常会看到 RSS 图标,就这的意思是,当你订阅了该文章,如果后续有更新,会及时通知你。其实,简单来讲就一句话:当一个对象变化时,其它依赖该对象的对象都会收到通知,并且随着变化!对象之间是一种一对多的关系。

public interface Observer { 
    public void update(); 
} 

public class Observer1 implements Observer { 
    @Override 
    public void update() { 
        System.out.println("observer1 has received!");   
    } 
} 

public class Observer2 implements Observer { 
    @Override 
    public void update() { 
        System.out.println("observer2 has received!");  
    } 
} 

public interface Subject { 
    /*增加观察者*/  
    public void add(Observer observer);   
    /*删除观察者*/   
    public void del(Observer observer);   
    /*通知所有的观察者*/  
    public void notifyObservers();  
    /*自身的操作*/  
    public void operation();
} 

public abstract class AbstractSubject implements Subject { 

    private Vector<Observer> vector = new Vector<Observer>(); 

    @Override 
    public void add(Observer observer) { 
        vector.add(observer); 
    } 

    @Override 
    public void del(Observer observer) { 
        vector.remove(observer); 
    } 

    @Override 
    public void notifyObservers() { 
        Enumeration<Observer> enumo = vector.elements(); 
        while (enumo.hasMoreElements()) {                 
            enumo.nextElement().update(); 
        } 
    } 
} 

public class MySubject extends AbstractSubject { 
    @Override 
    public void operation() { 
        System.out.println("update self!");   
        notifyObservers();  
    } 
} 

public class ObserverTest { 
    public static void main(String[] args) { 
        Subject sub = new MySubject(); 
        sub.add(new Observer1()); 
        sub.add(new Observer2()); 
        sub.operation();
    } 
} 

12. JVM垃圾回收机制和常见算法

理论上来讲Sun公司只定义了垃圾回收机制规则而不局限于其实现算法,因此不同厂商生产的虚拟机采用的算法也不尽相同。

GC(Garbage Collector)在回收对象前首先必须发现那些无用的对象,如何去发现定位这些无用的对象?常用的搜索算法如下:

1)引用计数器算法(废弃)

引用计数器算法是给每个对象设置一个计数器,当有地方引用这个对象的时候,计数器+1,当引用失效的时候,计数器-1,当计数器为0的时候,JVM就认为对象不再被使用,是“垃圾”了。

引用计数器实现简单,效率高;但是不能解决循环引用问问题(A 对象引用B 对象,B 对象又引用 A对象,但是A,B 对象已不被任何其他对象引用),同时每次计数器的增加和减少都带来了很多额外的开销,所以在 JDK1.1 之后,这个算法已经不再使用了。

2)根搜索算法(使用)

根搜索算法是通过一些“GC Roots”对象作为起点,从这些节点开始往下搜索,搜索通过的路径成为引用链(Reference Chain),当一个对象没有被GC Roots的引用链连接的时候,说明这个对象是不可用的。
在这里插入图片描述
GC Roots对象包括:
a) 虚拟机栈(栈帧中的本地变量表)中的引用的对象。
b) 方法区域中的类静态属性引用的对象。
c) 方法区域中常量引用的对象。
d) 本地方法栈中JNI(Native方法)的引用的对象。

通过上面的算法搜索到无用对象之后,就是回收过程,回收算法如下:

1)标记—清除算法(Mark-Sweep)(DVM使用的算法)

标记—清除算法包括两个阶段:“标记”和“清除”。在标记阶段,确定所有要回收的对象,并做标记。清除阶段紧随标记阶段,将标记阶段确定不可用的对象清除。标记—清除算法是基础的收集算法,标记和清除阶段的效率不高,而且清除后回产生大量的不连续空间,这样当程序需要分配大内存对象时,可能无法找到足够的连续空间。
在这里插入图片描述

2)复制算法(Copying)

复制算法是把内存分成大小相等的两块,每次使用其中一块,当垃圾回收的时候,把存活的对象复制到另一块上,然后把这块内存整个清理掉。复制算法实现简单,运行效率高,但是由于每次只能使用其中的一半,造成内存的利用率不高。现在的JVM用复制方法收集新生代,由于新生代中大部分对象(98%)都是朝生夕死的,所以两块内存的比例不是1:1(大概是8:1)。
在这里插入图片描述

3)标记—整理算法(Mark-Compact)

标记—整理算法和标记—清除算法一样,但是标记—整理算法不是把存活对象复制到另一块内存,而是把存活对象往内存的一端移动,然后直接回收边界以外的内存。标记—整理算法提高了内存的利用率,并且它适合在收集对象存活时间较长的老年代。
在这里插入图片描述

4)分代收集(Generational Collection

分代收集是根据对象的存活时间把内存分为新生代和老年代,根据各个代对象的存活特点,每个代采用不同的垃圾回收算法。新生代采用复制算法,老年代采用标记—整理算法。垃圾算法的实现涉及大量的程序细节,而且不同的虚拟机平台实现的方法也各不相同。

13. 谈谈JVM的内存结构和内存分配

a) Java内存模型

Java虚拟机将其管辖的内存大致分三个逻辑部分:方法区(Method Area)、Java栈和Java堆。

  1. 方法区是静态分配的,编译器将变量绑定在某个存储位置上,而且这些绑定不会在运行时改变。
    常数池,源代码中的命名常量、String常量和static变量保存在方法区。 常数池,源代码中的命名常量、String常量和static变量保存在方法区。
  2. Java Stack是一个逻辑概念,特点是后进先出。一个栈的空间可能是连续的,也可能是不连续的。
    最典型的 Stack 应用是方法的调用,Java 虚拟机每调用一次方法就创建一个方法帧(frame),退出该方法则对应的 方法帧被弹出(pop)。栈中存储的数据也是运行时确定的。
  3. Java堆分配(heap allocation)意味着以随意的顺序,在运行时进行存储空间分配和收回的内存管理模型。
    堆中存储的数据常常是大小、数量和生命期在编译时无法确定的。Java 对象的内存总是在 heap 中分配。

我们每天都在写代码,每天都在使用JVM的内存。

b) java内存分配

  1. 基础数据类型直接在栈空间分配;
  2. 方法的形式参数,直接在栈空间分配,当方法调用完成后从栈空间回收;
  3. 引用数据类型,需要用new来创建,既在栈空间分配一个地址空间,又在堆空间分配对象的类变量;
  4. 方法的引用参数,在栈空间分配一个地址空间,并指向堆空间的对象区,当方法调用完后从栈空间回收;
  5. 局部变量 new 出来时,在栈空间和堆空间中分配空间,当局部变量生命周期结束后,栈空间立刻被回收,堆空间区域等待GC 回收;
  6. 方法调用时传入的实际参数,先在栈空间分配,在方法调用完成后从栈空间释放;
  7. 字符串常量在 DATA 区域分配 ,this 在堆空间分配;
  8. 数组既在栈空间分配数组名称, 又在堆空间分配数组实际的大小!

14. Java中引用类型都有哪些?(重要)

Java中对象的引用分为四种级别,这四种级别由高到低依次为:强引用、软引用、弱引用和虚引用

强引用(StrongReference)

这个就不多说,我们写代码天天在用的就是强引用。如果一个对象被被人拥有强引用,那么垃圾回收器绝不会回收它。当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

Java的对象是位于heap中的,heap中对象有强可及对象、软可及对象、弱可及对象、虚可及对象和不可到达对象。应用的强弱顺序是强、软、弱、和虚。对于对象是属于哪种可及的对象,由他的最强的引用决定。如下代
码:

String abc=new String("abc");  //1        
SoftReference<String> softRef=new SoftReference<String>(abc);  //2        
WeakReference<String> weakRef = new WeakReference<String>(abc); //3        
abc=null; //4       
softRef.clear();//5  

第一行在heap堆中创建内容为“abc”的对象,并建立abc到该对象的强引用,该对象是强可及的。

第二行和第三行分别建立对 heap 中对象的软引用和弱引用,此时 heap 中的 abc 对象已经有 3 个引用,显然此时abc对象仍是强可及的。

第四行之后heap中对象不再是强可及的,变成软可及的。

第五行执行之后变成弱可及的。

软引用(SoftReference)

如果一个对象只具有软引用,那么如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。

软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,Java 虚拟机就会把这个软引用加入到与之关联的引用队列中。

软引用是主要用于内存敏感的高速缓存。在 jvm 报告内存不足之前会清除所有的软引用,这样以来 gc 就有可能收集软可及的对象,可能解决内存吃紧问题,避免内存溢出。什么时候会被收集取决于gc的算法和gc运行时可用内存的大小。当gc决定要收集软引用时执行以下过程,以上面的softRef为例:

  1. 首先将softRef的referent(abc)设置为null,不再引用heap中的new String(“abc”)对象。
  2. 将heap中的new String(“abc”)对象设置为可结束的(finalizable)。
  3. 当heap中的new String(“abc”)对象的finalize()方法被运行而且该对象占用的内存被释放, softRef被添加到它的ReferenceQueue(如果有的话)中。
注意 对ReferenceQueue软引用和弱引用可以有可无,但是虚引用必须有。

被 Soft Reference 指到的对象,即使没有任何 Direct Reference,也不会被清除。一直要到 JVM 内存不足且没有 Direct Reference 时才会清除,SoftReference 是用来设计 object-cache 之用的。如此一来 SoftReference 不但可以把对象 cache 起来,也不会造成内存不足的错误 (OutOfMemoryError)。

弱引用(WeakReference)

如果一个对象只具有弱引用,那该类就是可有可无的对象,因为只要该对象被 gc 扫描到了随时都会把它干掉。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。

虚引用(PhantomReference)

"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。虚引用主要用来跟踪对象被垃圾回收的活动。

虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

建立虚引用之后通过 get 方法返回结果始终为 null,通过源代码你会发现,虚引用通向会把引用的对象写进referent,只是get方法返回结果为null。先看一下和gc交互的过程再说一下他的作用。

  1. 不把referent设置为null, 直接把heap中的new String(“abc”)对象设置为可结束的(finalizable)。
  2. 与软引用和弱引用不同, 先把 PhantomRefrence 对象添加到它的 ReferenceQueue 中.然后在释放虚可及的对象。

15. heap和stack有什么区别

从以下几个方面阐述堆(heap)和栈(stack)的区别。

1. 申请方式

stack:由系统自动分配。例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间。

heap:需要程序员自己申请,并指明大小,在c中malloc函数,对于Java需要手动new Object()的形式开辟。

2. 申请后系统的响应

stack:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

heap:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时, 会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空
闲链表中。

3. 申请大小的限制

stack:栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。

heap:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

4. 申请效率的比较:

stack:由系统自动分配,速度较快。但程序员是无法控制的。

heap:由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

5. heap和stack中的存储内容

stack: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的 C 编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。

当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下
一条指令,程序由该点继续运行。

heap:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

6. 数据结构层面的区别

还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。

虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因。

7. 拓展知识(Java中堆栈的应用)

1). 栈(stack)与堆(heap)都是 Java 用来在 Ram 中存放数据的地方。与 C++不同,Java 自动管理栈和堆,程序员不能直接地设置栈或堆。

2). 栈的优势是,存取速度比堆要快,仅次于直接位于 CPU 中的寄存器。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。另外,栈数据可以共享,详见第 3 点。堆的优势是可以动态地分配内存大小,生存期也不必事先告诉编译器,Java 的垃圾回收器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。

3). Java中的数据类型有两种。
一种是基本类型(primitive types), 共有8种,即int, short, long, byte, float, double, boolean, char(注意,并没有string的基本类型)。这种类型的定义是通过诸如int a = 3; long b = 255L;的形式来定义的,称为自动变量(自动变量:只在定义它们的时候才创建,在定义它们的函数返回时系统回收变量所占存储空间。对这些变量存储空间的分配和回收是由系统自动完成的。)。值得注意的是,自动变量存的是字面值,不是类的实例,即不是类的引用,这里并没有类的存在。如int a = 3; 这里的a是一个指向int类型的引用,指向3这个字面值。这些字面值的数据,由于大小可知,生存期可知(这些字面值固定定义在某个程序块里面,程序块退出后,字段值就消失了),出于追求速度的原因,就存在于栈中。

另外,栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义

int a = 3;  
int b = 3

编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找有没有字面值为3的地址,没找到,就开辟一个存放3这个字面值的地址,然后将 a 指向 3的地址。接着处理int b = 3;在创建完b的引用变量后,由于在栈中已经有3这个字面值,便将b直接指向3的地址。这样,就出现了a与b同时均指向3的情况。

特别注意的是,这种字面值的引用与类对象的引用不同。假定两个类对象的引用同时指向一个对象,如果一个对象引用变量修改了这个对象的内部状态,那么另一个对象引用变量也即刻反映出这个变化。相反,通过字面值的引用来修改其值,不会导致另一个指向此字面值的引用的值也跟着改变的情况。如上例,我们定义完 a 与 b 的值后,再令 a=4;那么,b 不会等于 4,还是等于 3。在编译器内部,遇到 a=4;时,它就会重新搜索栈中是否有 4 的字面值,如果没有,重新开辟地址存放 4 的值;如果已经有了,则直接将 a 指向这个地址。因此 a 值的改变不会影响到b的值。

另一种是包装类数据,如Integer, String, Double等将相应的基本数据类型包装起来的类。这些类数据全部存在于堆中,Java 用 new()语句来显示地告诉编译器,在运行时才根据需要动态创建,因此比较灵活,但缺点是要占用更多的时间。

4).每个 JVM的线程都有自己的私有的栈空间,随线程创建而创建,java的stack存放的是frames,java的stack和c的不同,只是存放本地变量,返回值和调用方法,不允许直接push和pop frames ,因为frames 可能是有heap分配的,所以java的stack分配的内存不需要是连续的。java的heap是所有线程共享的,堆存放所有 runtime data ,里面是所有的对象实例和数组,heap是JVM启动时创建。

5). String 是一个特殊的包装类数据。即可以用 String str = new String(“abc”);的形式来创建,也可以用String str = “abc”;的形式来创建(作为对比,在JDK 5.0之前,你从未见过Integer i = 3;的表达式,因为类与字面值是不能通用的,除了 String。而在 JDK 5.0 中,这种表达式是可以的!因为编译器在后台进行 Integer i = new Integer(3)的转换)。前者是规范的类的创建过程,即在Java中,一切都是对象,而对象是类的实例,全部通过new()的形式来创建。那为什么在String str = “abc”;中,并没有通过new()来创建实例,是不是违反了上述原则?其实没有。

关于String str = "abc"的内部工作。Java内部将此语句转化为以下几个步骤:
(1)先定义一个名为str的对 String类的对象引用变量:String str;

(2)在栈中查找有没有存放值为"abc"的地址,如果没有,则开辟一个存放字面值为"abc"的地址,接着创建一个新的String类的对象o,并将o 的字符串值指向这个地址,而且在栈中这个地址旁边记下这个引用的对象o。如果已经有了值为"abc"的地址,则查找对象o,并返回o的地址。

(3)将str指向对象o的地址。
值得注意的是,一般String类中字符串值都是直接存值的。但像String str = “abc”;这种场合下,其字符串值却是保存了一个指向存在栈中数据的引用!

为了更好地说明这个问题,我们可以通过以下的几个代码进行验证。

String str1 = "abc";  
String str2 = "abc";  
System.out.println(str1==str2);   //true  
注意 我们这里并不用str1.equals(str2);的方式,因为这将比较两个字符串的值是否相等。==号,根据JDK的说明,只有在两个引用都指向了同一个对象时才返回真值。而我们在这里要看是,str1与str2是否都指向了同一个对象。

结果说明,JVM创建了两个引用str1和str2,但只创建了一个对象,而且两个引用都指向了这个对象。

我们再来更进一步,将以上代码改成:

String str1 = "abc";  
String str2 = "abc"; 
str1 = "bcd";  
System.out.println(str1 + "," + str2);   //bcd, abc  
System.out.println(str1==str2);   //false  

这就是说,赋值的变化导致了类对象引用的变化,str1指向了另外一个新对象!而str2仍旧指向原来的对象。上例中,当我们将str1 的值改为"bcd"时,JVM发现在栈中没有存放该值的地址,便开辟了这个地址,并创建了一个新的对象,其字符串的值指向这个地址。

事实上,String类被设计成为不可改变(immutable)的类。如果你要改变其值,可以,但JVM在运行时根据新值悄悄创建了一个新对象,然后将这个对象的地址返回给原来类的引用。这个创建过程虽说是完全自动进行的,但它毕竟占用了更多的时间。在对时间要求比较敏感的环境中,会带有一定的不良影响。

再修改原来代码:

String str1 = "abc";  
String str2 = "abc";  
str1 = "bcd";  
String str3 = str1;  
System.out.println(str3);   //bcd 
String str4 = "bcd";  
System.out.println(str1 == str4);   //true  

str3 这个对象的引用直接指向str1所指向的对象(注意,str3并没有创建新对象)。当 str1改完其值后,再创建一个 String 的引用 str4,并指向因 str1 修改值而创建的新的对象。可以发现,这回 str4 也没有创建新的对象,从而再次实现栈中数据的共享。

我们再接着看以下的代码。

String str1 = new String("abc");  
String str2 = "abc";  
System.out.println(str1==str2);   //false  

创建了两个引用。创建了两个对象。两个引用分别指向不同的两个对象。

以上两段代码说明,只要是用new()来新建对象的,都会在堆中创建,而且其字符串是单独存值的,即使与栈中的数据相同,也不会与栈中的数据共享。

6). 数据类型包装类的值不可修改。不仅仅是 String 类的值不可修改,所有的数据类型包装类都不能更改其内部的值。

7). 结论与建议:
(1)我们在使用诸如String str = “abc”;的格式定义类时,总是想当然地认为,我们创建了String类的对象str。担心陷阱!对象可能并没有被创建!唯一可以肯定的是,指向 String类的引用被创建了。至于这个引用到底是否指向了一个新的对象,必须根据上下文来考虑,除非你通过new()方法来显要地创建一个新的对象。因此,更为准确的说法是,我们创建了一个指向 String类的对象的引用变量str,这个对象引用变量指向了某个值为"abc"的 String 类。清醒地认识到这一点对排除程序中难以发现的bug是很有帮助的。

(2)使用String str = “abc”;的方式,可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String(“abc”);的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。这个思想应该是享元模式的思想,但JDK的内部在这里实现是否应用了这个模式,不得而知。

(3)当比较包装类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==。

(4)由于String类的immutable性质,当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。

如果java不能成功分配heap的空间,将抛出OutOfMemoryError。

16. 解释内存中的栈 (stack) 、堆 (heap) 和方法区 (method area) 的用法

通常我们定义一个基本数据类型的变量,一个对象的引用,还有就是函数调用的现场保存都使用 JVM 中的栈空间;而通过new关键字和构造器创建的对象则放在堆空间,堆是垃圾收集器管理的主要区域,由于现在的垃圾收集器都采用分代收集算法,所以堆空间还可以细分为新生代和老生代,再具体一点可以分为 Eden、Survivor(又可分为 From Survivor 和 To Survivor)、Tenured;方法区和堆都是各个线程共享的内存区域,用于存储已经被JVM加载的类信息、常量、静态变量、JIT 编译器编译后的代码等数据;程序中的字面量(literal)如直接书写的 100、"hello"和常量都是放在常量池中,常量池是方法区的一部分。栈空间操作起来最快但是栈很小,通常大量的对象都是放在堆空间,栈和堆的大小都可以通过 JVM 的启动参数来进行调整,栈空间用光了会引发 StackOverflowError,而堆和常量池空间不足则会引发 OutOfMemoryError。

String str = new String("hello"); 

上面的语句中变量 str 放在栈上,用 new 创建出来的字符串对象放在堆上,而"hello"这个字面量是放在方法区的。

欢迎关注作者的公众号《Java编程生活》,每日记载Java程序猿工作中遇到的问题
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/qq_26648623/article/details/84000511