第十四讲 共振

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_23940575/article/details/83477382

一,共振的数学模型:

  • 弹簧—质量—阻尼系统

  • 如图
  • 标准形式:{x}''+\frac{c}{m}{x}'+\frac{k}{m}x=0
  • 设阻尼常数\frac{c}{m}=2p,弹性常数\frac{k}{m}=\omega _{0}^{2}\omega_{0}表示弹簧的固有频率(圆频率),\omega _{0}>0
  • 原方程化为:{x}''+2p{x}'+\omega _{0}^{2}x=0
  • 假设阻尼系数c=0,方程右侧输入的驱动项f(t)=cos(\omega _{2}t),驱动频率\omega _{2}\neq \omega _{0}
  • (注:视频中的\omega _{1},这里用\omega _{2}表示,以便区别第三节的阻尼频率\omega _{1}
  • 方程为:{x}''+\omega_{0} ^{2}x=cos(\omega _{2}t)
  • 方程左边换成线性算子式:(D^{2}+\omega_{0} ^{2})x
  • 方程右边复数化:cos(\omega _{2}t)e^{i(\omega _{2}t)}的实部,将e^{i(\omega _{2}t)}代替cos(\omega _{2}t)
  • 方程化简为:(D^{2}+\omega_{0} ^{2})\widetilde{x}=e^{i(\omega _{2}t)}\widetilde{x}表示复数解,\alpha =i\omega _{2}
  • 因为p(\alpha )=(i\omega _{2})^{2}+\omega_{0} ^{2}=\omega_{0} ^{2}-\omega _{2}^{2}\neq 0
  • 指数输入定理\widetilde{x}_{p}=\frac{e^{i(\omega _{2}t)}}{\omega_{0} ^{2}-\omega _{2}^{2}}
  • 取出实部:x_{p}=Im(\widetilde{x})=\frac{cos(\omega _{2}t)}{\omega_{0} ^{2}-\omega _{2}^{2}}
  • 幅度:\frac{1}{\omega_{0} ^{2}-\omega _{2}^{2}};响应频率即驱动频率:\omega _{2}
  • \omega _{2}不断趋近\omega _{0}时,\frac{1}{\omega_{0} ^{2}-\omega _{2}^{2}}趋于无穷大
  • 如图1:
  • 假设驱动频率\omega _{2}= \omega _{0}
  • 方程为:(D^{2}+\omega_{0} ^{2})\widetilde{x}=e^{i(\omega _{0}t)}\alpha =i\omega _{0}
  • p(\alpha )=(i\omega _{0})^{2}+\omega_{0} ^{2}=\omega_{0} ^{2}-\omega _{0}^{2}= 0
  • \alphap(\alpha )的一个单根
  • {p}'(\alpha )={((i\omega _{0})^{2}+\omega_{0} ^{2})}'=2i\omega _{0}\omega _{0}视为常数
  • 指数输入定理\widetilde{x}_{p}=\frac{te^{i(\omega _{0}t)}}{2i\omega _{0}}
  • 取出实部:x_{p}=\frac{t\cdot sin(\omega _{0}t)}{2\omega _{0}}=\frac{t}{2\omega _{0}}sin(\omega _{0}t)
  • 幅度:\frac{t}{2\omega _{0}};响应频率即固有频率:\omega _{0}
  • 振幅和时间t成正比,当t=0时振幅为0
  • 如图2:

二,当\omega _{2}不断趋近\omega _{0}时,怎么会从图1突然变成图2?

  • 图1和图2是方程的两个特解,而且差别很大,现在来求它们的通解:
  • 方程:(D^{2}+\omega_{0} ^{2})\widetilde{x}=e^{i(\omega _{2}t)}
  • 伴随方程:(D^{2}+\omega_{0} ^{2})x=0
  • 特征方程:r^{2}+\omega _{0}^{2}=0
  • 特征解:r=\pm i\omega _{0}
  • x=e^{i\omega _{0}t}=cos(\omega _{0}t)+isin(\omega _{0}t)
  • 根据定理(第九讲第三节):x_{1}=cos(\omega _{0}t)x_{2}=sin(\omega _{0}t)
  • 通解:x=x_{p}+c_{1}x_{1}+c_{2}x_{2}=\frac{cos(\omega _{2}t)}{\omega_{0} ^{2}-\omega _{2}^{2}}+c_{1}cos(\omega _{0}t)+c_{2}sin(\omega _{0}t)
  • c_{1}=-\frac{1}{\omega_{0} ^{2}-\omega _{2}^{2}}c_{2}=0
  • 通解化为:x=\frac{cos(\omega _{2}t)}{\omega_{0} ^{2}-\omega _{2}^{2}}-\frac{cos(\omega _{0}t)}{\omega_{0} ^{2}-\omega _{2}^{2}}=\frac{cos(\omega _{2}t)-cos(\omega _{0}t)}{\omega_{0} ^{2}-\omega _{2}^{2}}
  • \omega _{2}不断趋近\omega _{0}\lim_{\omega _{2}\rightarrow \omega _{0}}\frac{cos(\omega _{2}t)-cos(\omega _{0}t)}{\omega_{0} ^{2}-\omega _{2}^{2}}
  • 洛必达法则:\lim_{\omega _{2}\rightarrow \omega _{0}}\frac{cos(\omega _{2}t)-cos(\omega _{0}t)}{\omega_{0} ^{2}-\omega _{2}^{2}}=\frac{-sin(\omega _{2}t)t}{-2\omega _{2}}=\frac{t}{2\omega _{0}}sin(\omega _{0}t)
  • 下面求通解的图像:
  • 和差化积公式:cos\beta -cos\alpha=2sin(\frac{\alpha -\beta }{2})sin(\frac{\alpha +\beta }{2})
  • 同理:cos(\omega _{2}t)-cos(\omega _{0}t)=2sin(\frac{\omega _{0}t-\omega _{2}t}{2})sin(\frac{\omega _{0}t+\omega _{2}t}{2})
  • 通解:x=\frac{cos(\omega _{2}t)-cos(\omega _{0}t)}{\omega_{0} ^{2}-\omega _{2}^{2}}\rightarrow \frac{2}{\omega_{0} ^{2}-\omega _{2}^{2}}sin(\frac{\omega _{0}t-\omega _{2}t}{2})sin(\frac{\omega _{0}t+\omega _{2}t}{2})
  • \omega _{2}不断趋近\omega _{0}时:sin(\frac{\omega _{0}t+\omega _{2}t}{2})\rightarrow sin(\omega _{0}t),视为响应振荡
  • \frac{2}{\omega_{0} ^{2}-\omega _{2}^{2}}sin(\frac{\omega _{0}-\omega _{2}}{2}t)视为变化的振幅,\frac{\omega _{0}-\omega _{2}}{2}表示振幅的频率,越来越小
  • 如图3:见视频30:00~33:00,当\omega _{2}不断趋近\omega _{0}时,图3逐渐变成图2

三,假设阻尼系数c\neq 0p< \omega _{0},驱动项为f(t)

  • 方程为:{x}''+2p{x}'+\omega_{0} ^{2}x=f(t)
  • \omega_{0}表示弹簧的固有频率
  • \omega _{1}表示阻尼的固有频率(伪圆频率),见第十讲第三节
  • 定理:\omega _{1}^{2}=\omega _{0}^{2}-p^{2}(勾股定理)
  • \omega _{0}是固定的,阻尼p越大,阻尼频率\omega _{1}就越小;阻尼p越小,阻尼频率\omega _{1}就越接近弹簧频率\omega _{0}
  • 假设驱动项f(t)=cos(\omega_{2} t)
  • 方程为:{x}''+2p{x}'+\omega_{0} ^{2}x=cos(\omega_{2} t)
  • 只有当没有阻尼的时候,才能产生共振,如第一节所述
  • 什么情况下,输入频率\omega _{2}能使响应频率的振幅最大?
  • 答:当共振频率\omega _{r}接近阻尼频率\omega _{1}时,即:当\omega _{r}^{2}=\omega _{0}^{2}-(2p)^{2}时。

猜你喜欢

转载自blog.csdn.net/qq_23940575/article/details/83477382
今日推荐