Brown Clustering算法和代码学习

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014516670/article/details/50574147

一、算法

  布朗聚类是一种自底向上的层次聚类算法,基于n-gram模型和马尔科夫链模型。布朗聚类是一种硬聚类,每一个词都在且只在唯一的一个类中。

  

w是词,c是词所属的类。

  布朗聚类的输入是一个语料库,这个语料库是一个词序列,输出是一个二叉树,树的叶子节点是一个个词,树的中间节点是我们想要的类(中间结点作为根节点的子树上的所有叶子为类中的词)。


  初始的时候,将每一个词独立的分成一类,然后,将两个类合并,使得合并之后评价函数最大,然后不断重复上述过程,达到想要的类的数量的时候停止合并。

  上面提到的评价函数,是对于n个连续的词(w)序列能否组成一句话的概率的对数的归一化结果。于是,得到评价函数:


n是文本长度,w是词

  上面的评价公式是PercyLiang的“Semi-supervised learning for natural languageprocessing”文章中关于布朗聚类的解释,Browm原文中是基于class-based bigram language model建立的,于是得到下面公式:


扫描二维码关注公众号,回复: 3816410 查看本文章

T是文本长度,t是文本中的词

  上述公式是由于对于bigram,于是归一化处理只需要对T-1个bigram。我觉得PercyLiang的公式容易理解评价函数的定义,但是,Brown的推导过程更加清晰简明,所以,接下来的公式推导遵循Brown原文中的推导过程。


  上面的推导式数学推导,接下来是一个重要的近似处理,近似等于w2在训练集中出现的频率,也就是Pr(w2),于是公式变为:


  H(w)是熵,只跟1-gram的分布有关,也就是与类的分布无关,而I(c1,c2)是相邻类的平均互信息。所以,I决定了L。所以,只有最大化I,L才能最大。

二、优化

  Brown提出了一种估算方式进行优化。首先,将词按照词频进行排序,将前C(词的总聚类数目)个词分到不同的C类中,然后,将接下来词频最高的词,添加到一个新的类,将(C+1)类聚类成C类,即合并两个类,使得平均互信息损失最小。虽然,这种方式使得计算不是特别精确,类的加入顺序,决定了合并的顺序,会影响结果,但是极大的降低了计算复杂度。

  显然上面提及的算法仍然是一种naive的算法,算法复杂度十分高。(上述结果包括下面的复杂度结果来自Percy Liang的论文)。对于这么高的复杂度,对于成百上千词的聚类将变得不现实,于是,优化算法变得不可或缺。Percy Liang和Brown分别从两个角度去优化。

  Brown从代数的角度优化,通过一个表格记录下每次合并的中间结果,然后,用来计算下一次结果。

  Percy Liang从几何的角度考虑优化,更加清晰直观。但是,Percy Liang是从跟Brown的损失函数L相反的角度去考虑(即两者正负号不同),但是,都是为了保留中间结果,减少计算量,个人觉得PercyLiang的算法比较容易理解,而且,他少忽略了一些没必要计算的中间结果,更加优化,后面介绍的代码,也是PercyLiang写的,所以,将会重点介绍一下他的思考方式。

  Percy Liang将聚类结果表示成一个无向图,图的节点有C个,代表C个类,同时,任何两个节点都有一条边,边代表相邻两个节点之间(两个类之间)的平均互信息。边的权重如下表达式:



  而评价的总的平均互信息I就是所有边的权重之和。下面是实际代码中的计算损失评价的函数即合并后的I减去合并前的I的损失。



  上述的(c并c')代表合并c和两个节点后的一个节点,C是当前集合,而C'是合并后的集合:

 

三、代码实现

  代码实现的主要过程概览:

   1、读取文本并预处理

     1) 将文本中的每个词读入并编码(其中过滤一些频次极其低的)

     2)统计词表大小、出现次数

     3)将文本左右两个方向的n-gram存储

   2、初始化布朗聚类(N log N)

     1)将词进行排序

     2)将频次最高的initC个词分配到每个类

     3)初始化p1(概率),q2(边的权重)

   3、进行布朗聚类

     1)初始化L2(合并减少的互信息)

     2) 将当前未聚类的词中,出现频次最高的,作为一个类,添加进去,并同时,计算p1,q2,L2

     3)找到最小的L2

     4)合并,并更新q2,L2

  代码还实现了计算KL散度比较相关性,此部分略去。

   这里p1如下

          

    q2如下

        

四、重要代码段解析

初始化L2:

<span style="font-size:18px;">// O(C^3) time.
void compute_L2() {
  track("compute_L2()", "", true);

  track_block("Computing L2", "", false)
  FOR_SLOT(s) {
    track_block("L2", "L2[" << Slot(s) << ", *]", false)
    FOR_SLOT(t) {
      if(!ORDER_VALID(s, t)) continue;
      double l = L2[s][t] = compute_L2(s, t);
      logs("L2[" << Slot(s) << "," << Slot(t) << "] = " << l << ", resulting minfo = " << curr_minfo-l);
    }
  }
}</span>

上面调用,单步计算L2:

<span style="font-size:18px;">// O(C) time.
double compute_L2(int s, int t) { // compute L2[s, t]
  assert(ORDER_VALID(s, t));
  // st is the hypothetical new cluster that combines s and t

  // Lose old associations with s and t
  double l = 0.0;
  for (int w = 0; w < len(slot2cluster); w++) {
    if ( slot2cluster[w] == -1) continue;
    l += q2[s][w] + q2[w][s];
    l += q2[t][w] + q2[w][t];
  }
  l -= q2[s][s] + q2[t][t];
  l -= bi_q2(s, t);

  // Form new associations with st
  FOR_SLOT(u) {
    if(u == s || u == t) continue;
    l -= bi_hyp_q2(_(s, t), u);
  }
  l -= hyp_q2(_(s, t)); // q2[st, st]
  return l;
}
</span>

聚类过程中,更新p1,q2,L2,调用时(两次):

<span style="font-size:18px;">// Stage 1: Maintain initC clusters.  For each of the phrases initC..N-1, make
  // it into a new cluster.  Then merge the optimal pair among the initC+1
  // clusters.
  // O(N*C^2) time.
  track_block("Stage 1", "", false) {
    mem_tracker.report_mem_usage();
    for(int i = initC; i < len(freq_order_phrases); i++) { // Merge phrase new_a
      int new_a = freq_order_phrases[i];
      track("Merging phrase", i << '/' << N << ": " << Cluster(new_a), true);
      logs("Mutual info: " << curr_minfo);
      incorporate_new_phrase(new_a);//添加后,C->C+1
      repcheck();
      merge_clusters(find_opt_clusters_to_merge());//合并后,C+1->C


      repcheck();
    }
  }
</span>

添加后,更新p1,q2,L2

<span style="font-size:18px;">// Add new phrase as a cluster.
// Compute its L2 between a and all existing clusters.
// O(C^2) time, O(T) time over all calls.
void incorporate_new_phrase(int a) {
  track("incorporate_new_phrase()", Cluster(a), false);

  int s = put_cluster_in_free_slot(a);
  init_slot(s);
  cluster2rep[a] = a;
  rep2cluster[a] = a;

  // Compute p1
  p1[s] = (double)phrase_freqs[a] / T;
  
  // Overall all calls: O(T)
  // Compute p2, q2 between a and everything in clusters
  IntIntMap freqs;
  freqs.clear(); // right bigrams
  forvec(_, int, b, right_phrases[a]) {
    b = phrase2rep.GetRoot(b);
    if(!contains(rep2cluster, b)) continue;
    b = rep2cluster[b];
    if(!contains(cluster2slot, b)) continue;
    freqs[b]++;
  }
  forcmap(int, b, int, count, IntIntMap, freqs) {
    curr_minfo += set_p2_q2_from_count(cluster2slot[a], cluster2slot[b], count);
    logs(Cluster(a) << ' ' << Cluster(b) << ' ' << count << ' ' << set_p2_q2_from_count(cluster2slot[a], cluster2slot[b], count));
  }

  freqs.clear(); // left bigrams
  forvec(_, int, b, left_phrases[a]) {
    b = phrase2rep.GetRoot(b);
    if(!contains(rep2cluster, b)) continue;
    b = rep2cluster[b];
    if(!contains(cluster2slot, b)) continue;
    freqs[b]++;
  }
  forcmap(int, b, int, count, IntIntMap, freqs) {
    curr_minfo += set_p2_q2_from_count(cluster2slot[b], cluster2slot[a], count);
    logs(Cluster(b) << ' ' << Cluster(a) << ' ' << count << ' ' << set_p2_q2_from_count(cluster2slot[b], cluster2slot[a], count));
  }

  curr_minfo -= q2[s][s]; // q2[s, s] was double-counted

  // Update L2: O(C^2)
  track_block("Update L2", "", false) {

    the_job.s = s;
    the_job.is_type_a = true;
    // start the jobs
    for (int ii=0; ii<num_threads; ii++) {
      thread_start[ii].unlock(); // the thread waits for this lock to begin
    }
    // wait for them to be done
    for (int ii=0; ii<num_threads; ii++) {
      thread_idle[ii].lock();  // the thread releases the lock to finish
    }
  }

  //dump();
}
</span>

合并后,更新

<span style="font-size:18px;">// O(C^2) time.
// Merge clusters a (in slot s) and b (in slot t) into c (in slot u).
void merge_clusters(int s, int t) {
  assert(ORDER_VALID(s, t));
  int a = slot2cluster[s];
  int b = slot2cluster[t];
  int c = curr_cluster_id++;
  int u = put_cluster_in_free_slot(c);

  free_up_slots(s, t);

  // Record merge in the cluster tree
  cluster_tree[c] = _(a, b);
  curr_minfo -= L2[s][t];

  // Update relationship between clusters and rep phrases
  int A = cluster2rep[a];
  int B = cluster2rep[b];
  phrase2rep.Join(A, B);
  int C = phrase2rep.GetRoot(A); // New rep phrase of cluster c (merged a and b)

  track("Merging clusters", Cluster(a) << " and " << Cluster(b) << " into " << c << ", lost " << L2[s][t], false);

  cluster2rep.erase(a);
  cluster2rep.erase(b);
  rep2cluster.erase(A);
  rep2cluster.erase(B);
  cluster2rep[c] = C;
  rep2cluster[C] = c;

  // Compute p1: O(1)
  p1[u] = p1[s] + p1[t];

  // Compute p2: O(C)
  p2[u][u] = hyp_p2(_(s, t));
  FOR_SLOT(v) {
    if(v == u) continue;
    p2[u][v] = hyp_p2(_(s, t), v);
    p2[v][u] = hyp_p2(v, _(s, t));
  }

  // Compute q2: O(C)
  q2[u][u] = hyp_q2(_(s, t));
  FOR_SLOT(v) {
    if(v == u) continue;
    q2[u][v] = hyp_q2(_(s, t), v);
    q2[v][u] = hyp_q2(v, _(s, t));
  }

  // Compute L2: O(C^2)
  track_block("Compute L2", "", false) {
    the_job.s = s;
    the_job.t = t;
    the_job.u = u;
    the_job.is_type_a = false;

    // start the jobs
    for (int ii=0; ii<num_threads; ii++) {
      thread_start[ii].unlock(); // the thread waits for this lock to begin
    }
    // wait for them to be done
    for (int ii=0; ii<num_threads; ii++) {
      thread_idle[ii].lock();  // the thread releases the lock to finish
    }
  }
}
void merge_clusters(const IntPair &st) { merge_clusters(st.first, st.second); }
</span>

更新L2过程,其中使用了多线程:

使用数据结构:

<span style="font-size:18px;">// Variables used to control the thread pool
mutex * thread_idle;
mutex * thread_start;
thread * threads;
struct Compute_L2_Job {
  int s;
  int t;
  int u;
  bool is_type_a;
};
Compute_L2_Job the_job;
bool all_done = false;
</span>

初始化,将所有线程锁住:

<span style="font-size:18px;">// start the threads
  thread_start = new mutex[num_threads];
  thread_idle = new mutex[num_threads];
  threads = new thread[num_threads];
  for (int ii=0; ii<num_threads; ii++) {
    thread_start[ii].lock();
    thread_idle[ii].lock();
    threads[ii] = thread(update_L2, ii);
  }
</span>
调用线程,共计2处,第一处是在添加后:

<span style="font-size:18px;">// Update L2: O(C^2)
  track_block("Update L2", "", false) {

    the_job.s = s;
    the_job.is_type_a = true;
    // start the jobs
    for (int ii=0; ii<num_threads; ii++) {
      thread_start[ii].unlock(); // the thread waits for this lock to begin
    }
    // wait for them to be done
    for (int ii=0; ii<num_threads; ii++) {
      thread_idle[ii].lock();  // the thread releases the lock to finish
    }
  }
</span>

第二处是在合并后

<span style="font-size:18px;">// Compute L2: O(C^2)
  track_block("Compute L2", "", false) {
    the_job.s = s;
    the_job.t = t;
    the_job.u = u;
    the_job.is_type_a = false;

    // start the jobs
    for (int ii=0; ii<num_threads; ii++) {
      thread_start[ii].unlock(); // the thread waits for this lock to begin
    }
    // wait for them to be done
    for (int ii=0; ii<num_threads; ii++) {
      thread_idle[ii].lock();  // the thread releases the lock to finish
    }
  }
</span>

结束调用:

<span style="font-size:18px;">// finish the threads
  all_done = true;
  for (int ii=0; ii<num_threads; ii++) {
    thread_start[ii].unlock(); // thread will grab this to start
    threads[ii].join();
  }
  delete [] thread_start;
  delete [] thread_idle;
  delete [] threads;
</span>
    通过两个锁实现调用,每次调用时通过更新the_job来改变计算参数,调用时打开thread_start锁,结束后,关闭thread_idle锁。
参考文献:

Liang: Semi-supervised learning for natural language processing

Brown, et al.: Class-Based n-gram Models of Natural Language

代码来源:

https://github.com/percyliang/brown-cluster












猜你喜欢

转载自blog.csdn.net/u014516670/article/details/50574147
今日推荐