Dubbo RPC源码解读

https://yq.aliyun.com/articles/272405#27

本文代码摘录的时候,将一些与本流程无关的内容去掉了,如有需要请看源码。

一、闲言碎语

使用rpc框架已经多年了,虽然之前有研究过rpc的过程,但是却不曾详细阅读过dubbo的源码,探究过其中的设计思路与亮点。所以抽时间阅读了一下dubbo的源码,分享出来和大家一起学习。

二、目标与示例

1. 目标

l   探究dubbo rpc实现原理。

l   探究rpc从发出请求到收到返回结果这整个过程的详细过程。

l   学习rpc的负载均衡原理。

l   学习服务暴露、服务发现的原理以及实现细节。

l   多线程中dubbo是如何做到将返回结果和每个线程一一对应的。

本文重点为源码分析和模型实现分析,如果对dubbo的概念和使用不熟悉,情移步官网。

本文的所有分析均基于dubbo 2.5.3版本。

本文假定使用zookeeper管理服务。

2. 示例代码

以下的分析基于以下配置方式。不同的配置方式并不会影响本文所需要解决的几个问题,只是一下方式配置会比较便于理解,所以这里依次做为示例。

1) consumer

<bean id="rpcServiceRef" class="com.alibaba.dubbo.config.spring.ReferenceBean"> <property name="interface" value="com.wzf.service.RpcService"/> <property name="application" ref="dubboApplicationConfig"/> <property name="registry" ref="dubboRegistryConfig"/> <property name="version" value="dev"/> <property name="timeout" value="3000"/> <property name="retries" value="0"/> <property name="check" value="false"/> </bean>

2) provider

<bean id="rpcServiceExport" class="com.alibaba.dubbo.config.spring.ServiceBean"> <property name="interface" value="com.wzf.funny.service.RpcService"/> <property name="ref" ref="rpcServiceImpl"/> <property name="application" ref="dubboApplicationConfig"/> <property name="registry" ref="dubboRegistryConfig"/> <property name="protocol" ref="dubboProtocolConfig"/> <property name="version" value="dev"/> <property name="timeout" value="0"/> <property name="retries" value="0"/> </bean>

三、  模型

1. dubbo的模块模型

99a978dea16c5ceeeeded827675e541e11f97c08

dubbo的模块模型有些复杂,不太容易看懂,如果你也有同感的话,可以看一下本文后面的几部分,他们详细讲述了dubbo中rpc的调用链,其中包括了核心的几个类,比较便于理解。

2. 服务调用关系模型

28338f8c34c47f7b8e1befb893e262d50cf94078

 

如图所示,dubbo的RPC调用模型分为registry、provider、consumer、monitor这几个部分。此图展示了从服务注册、发现、调用的全过程,但dubbo是如何做到的呢?其实这个问题包括了以下几个问题:provider如何注册服务到zookeeper;consumer如何从zookeeper拉取provider信息;provider变化以后,zookeeper如何告知consumer;consumer如何调用provider。另外,监控逻辑很简单本文暂时不做分析。

3. Provider

从源码上看ServiceBean主要完成以下几件工作:服务暴露,取消暴露服务。

1) 暴露服务

服务暴露开始于ServiceBean的afterPropertiesSet方法,此方法在ServiceBean的所有属性都被赋值以后被BeanFactory调用。服务暴露的调用链是: ServiceConfig#export -> ServiceConfig#doExport -> ServiceConfig#doExportUrls -> ServiceConfig#doExportUrlsFor1Protocol -> ServiceConfig#exportLocal(URL url)。 暴露服务其实包括两个类容:

l   将Invoker存入AbstractProtocol#exporterMap,调用服务时从次map中取出Invoker直接使用。

protected final Set<Invoker<?>> invokers = new ConcurrentHashSet<Invoker<?>>();

其中key为:com.wzf.funny.service.ArticleService:dev, value为invoker对象

l   将url注册到zookeeper。

此过程的入口在RegistryProtocol#export方法中,调用链为:

RegistryProtocol#export -> FailbackRegistry#register -> AbstractRegistry#register -> ZookeeperRegistry#doRegister -> ZookeeperClient#create -> AbstractZookeeperClient#create

2) 服务发现

ZookeeperRegistry是服务发现的核心类之一,实现了《服务调用关系模型》中的register、subscribe、notify。以下分析一下几个主要的方法。

l  构造函数

从以下代码中可以看到,zkClient创建成功以后,会监听RECONNECTED事件,recover方法主要做一件事:将需要暴露的url放在failedRegistered(Set<URL>)中,将需要订阅的服务放在failedSubscribed(Set<URL>)中。说明RECONNECTED时,因为所有需要暴露的服务都需要重新注册,所以其实是将需要暴露、订阅的url都放到failedRegistered、failedSubscribed中。

public ZookeeperRegistry(URL url, ZookeeperTransporter zookeeperTransporter) { super(url); //其他代码省略 this.root = group; zkClient = zookeeperTransporter.connect(url); zkClient.addStateListener(new StateListener() { public void stateChanged(int state) { if (state == RECONNECTED) { try { recover(); } catch (Exception e) { logger.error(e.getMessage(), e); } } } }); }

创建zkclient的url示例如下:

zookeeper://localhost:2181/com.alibaba.dubbo.registry.RegistryService?application=funny&dubbo=2.5.3&interface=com.alibaba.dubbo.registry.RegistryService&pid=38796&timestamp=1502594657663

l  register(URL url)

注册url代表的服务到zookeeper

l  unregister(URL url) 

从zookeeper中删除之前注册的服务

l  subscribe(URL url, NotifyListener listener)

订阅url的服务

l  unsubscribe(URL url, NotifyListener listener)

取消订阅url对应的服务

l  notify(URL url, NotifyListener listener, List<URL> urls)

通知

l  retry()

上面提到过,在recover()中将需要暴露的服务放到failedRegistered(Set<URL>)中,将需要订阅的服务放在failedSubscribed(Set<URL>)中,并没有真正的重新暴露服务或者订阅服务,这个工作是放在retry()中的,另外notify、doUnsubscribe,failedUnregistered也都放在此方法中处理。retry()方法的主要逻辑如下(为了方便阅读,我删掉了部分代码),retry被一个定时线程调用:

    protected void retry() { if (! failedRegistered.isEmpty()) { for (URL url : failed) { doRegister(url); failedRegistered.remove(url); } } if(! failedUnregistered.isEmpty()) { for (URL url : failed) { doUnregister(url); failedUnregistered.remove(url); } } if (! failedSubscribed.isEmpty()) { for (Map.Entry<URL, Set<NotifyListener>> entry : failed.entrySet()) { URL url = entry.getKey(); Set<NotifyListener> listeners = entry.getValue(); for (NotifyListener listener : listeners) { doSubscribe(url, listener); listeners.remove(listener); } } } if (! failedUnsubscribed.isEmpty()) { for (Map.Entry<URL, Set<NotifyListener>> entry : failed.entrySet()) { URL url = entry.getKey(); Set<NotifyListener> listeners = entry.getValue(); for (NotifyListener listener : listeners) { doUnsubscribe(url, listener); listeners.remove(listener); } } } if (! failedNotified.isEmpty()) { for (Map<NotifyListener, List<URL>> values : failed.values()) { for (Map.Entry<NotifyListener, List<URL>> entry:values.entrySet()) { NotifyListener listener = entry.getKey(); List<URL> urls = entry.getValue(); listener.notify(urls); values.remove(listener); } } } } this.retryFuture = retryExecutor.scheduleWithFixedDelay(new Runnable() { public void run() { // 检测并连接注册中心 try { retry(); } catch (Throwable t) { // 防御性容错 logger.error("Unexpected error occur at failed retry, cause: " + t.getMessage(), t); } } }, retryPeriod, retryPeriod, TimeUnit.MILLISECONDS); 



3) 取消暴露服务

取消服务暴露是将服务从zk中移除的过程,保证此后consumer无法再使用此服务。ZkclientZookeeperClient中订阅了所有状态改变的事件,状态的改变最终会触发调用recover方法,从而导致调用unRegister方法,将zk节点删除。

另外,因为在zk那边建立的是临时的节点,所以服务器和zk断开联系后,node将自动删除。Consumer将收到notify消息。

public ZkclientZookeeperClient(URL url) { super(url); client = new ZkClient(url.getBackupAddress()); client.subscribeStateChanges(new IZkStateListener() { public void handleStateChanged(KeeperState state) throws Exception { ZkclientZookeeperClient.this.state = state; if (state == KeeperState.Disconnected) { stateChanged(StateListener.DISCONNECTED); } else if (state == KeeperState.SyncConnected) { stateChanged(StateListener.CONNECTED); } } public void handleNewSession() throws Exception { stateChanged(StateListener.RECONNECTED); } }); }

4) RPC调用

l   Wrapper类

调用Wrapper#getWrapper方法时,会尝试从WRAPPER_MAP中获取,如果获取到直接返回,如果获取不到,则进入makeWrapper方法创建一个,创建好了以后放入WRAPPER_MAP中。makeWrapper是一个核心的方法,这个方法中做对原有RpcService的封装,具体逻辑如下。

首先创建三个方法:setPropertyValue、getPropertyValue、invokeMethod,代码如下

StringBuilder c1 = new StringBuilder("public void setPropertyValue(Object o, String n, Object v){ "); StringBuilder c2 = new StringBuilder("public Object getPropertyValue(Object o, String n){ "); StringBuilder c3 = new StringBuilder("public Object invokeMethod(Object o, String n, Class[] p, Object[] v) throws " + InvocationTargetException.class.getName() + "{ "};



然后遍历RpcService的所有属性、方法,在原有属性的get、set、invoke的时候添加一些逻辑,因为invokeMethod方法与rpc关系最为密切的方法,所以重点讨论此方法。生成invokemethod的逻辑就是一个字符串拼接的过程,就不讨论了,这里将结果贴出来讨论一下,如下。其中:$1表示proxy;$2表示methodName;$3表示parameterTypes;$4表示arguments;$w表示returnType

public Object invokeMethod(Object o, String n, Class[] p, Object[] v) throws java.lang.reflect.InvocationTargetException { com.wzf.funny.service.ArticleService w; try { w = ((com.wzf.funny.service.ArticleService) $1); } catch (Throwable e) { throw new IllegalArgumentException(e); } try { if ("pageQuery".equals($2) && $3.length == 2) { return ($w) w.pageQuery((com.wzf.funny.query.ArticleQuery) $4[0], ((Boolean) $4[1]).booleanValue()); } } catch (Throwable e) { throw new java.lang.reflect.InvocationTargetException(e); } throw new com.alibaba.dubbo.common.bytecode.NoSuchMethodException( "Not found method \"" + $2 + "\" in class com.wzf.funny.service.ArticleService."); } 

最后构建Wrapper对象,构建的时候加上一些属性、方法,其中c1表示setPropertyValue,c2表示getPropertyValue ,c3表示invokeMethod。代码如下:

     ClassGenerator cc = ClassGenerator.newInstance(cl); cc.setClassName( ( Modifier.isPublic(c.getModifiers()) ? Wrapper.class.getName() : c.getName() + "$sw" ) + id ); cc.setSuperClass(Wrapper.class); cc.addDefaultConstructor(); cc.addField("public static String[] pns;"); // property name array. cc.addField("public static " + Map.class.getName() + " pts;"); // property type map. cc.addField("public static String[] mns;"); // all method name array. cc.addField("public static String[] dmns;"); // declared method name array. for(int i=0,len=ms.size();i<len;i++) cc.addField("public static Class[] mts" + i + ";"); cc.addMethod("public String[] getPropertyNames(){ return pns; }"); cc.addMethod("public boolean hasProperty(String n){ return pts.containsKey($1); }"); cc.addMethod("public Class getPropertyType(String n){ return (Class)pts.get($1); }"); cc.addMethod("public String[] getMethodNames(){ return mns; }"); cc.addMethod("public String[] getDeclaredMethodNames(){ return dmns; }"); cc.addMethod(c1.toString()); cc.addMethod(c2.toString()); cc.addMethod(c3.toString()); Class<?> wc = cc.toClass(); // setup static field. wc.getField("pts").set(null, pts); wc.getField("pns").set(null, pts.keySet().toArray(new String[0])); wc.getField("mns").set(null, mns.toArray(new String[0])); wc.getField("dmns").set(null, dmns.toArray(new String[0])); int ix = 0; for( Method m : ms.values() ) wc.getField("mts" + ix++).set(null, m.getParameterTypes()); return (Wrapper)wc.newInstance();

l   JavassistProxyFactory#getInvoker

如下代码所示,在JavassistProxyFactory中创建Invoker时,其实创建的是AbstractProxyInvoker的子类,其中proxy为xml中配置的rpcServiceImpl对象,即我们的目标对象。当consumer发起Rpc请求时,会将classname、methodname、 parameterTypes、arguments这些数据传输过来,在wrapper.invokeMethod中通过动态代理技术,直接调用rpcServiceImpl中的 methodname方法。

   public <T> Invoker<T> getInvoker(T proxy, Class<T> type, URL url) { // TODO Wrapper类不能正确处理带$的类名 final Wrapper wrapper = Wrapper.getWrapper(proxy.getClass().getName().indexOf('$') < 0 ? proxy.getClass() : type); return new AbstractProxyInvoker<T>(proxy, type, url) { @Override protected Object doInvoke(T proxy, String methodName, Class<?>[] parameterTypes, Object[] arguments) throws Throwable { return wrapper.invokeMethod(proxy, methodName, parameterTypes, arguments); } }; }



4. Consumer

1)   负载均衡算法

l   RandomLoadBalance

先计算是否所有invoker的权重是否相同,相同则直接random一下,否则根据权重加权。主要代码如下:

if (totalWeight > 0 && ! sameWeight) { // 如果权重不相同且权重大于0则按总权重数随机 int offset = random.nextInt(totalWeight); // 并确定随机值落在哪个片断上 for (int i = 0; i < length; i++) { offset -= getWeight(invokers.get(i), invocation); if (offset < 0) { return invokers.get(i); } } } // 如果权重相同或权重为0则均等随机 return invokers.get(random.nextInt(length)); 

l   LeastActiveLoadBalance

先计算出一个最少活跃数的invoker集合,然后从这个集合中随机选取一个,然后计算是否所有invoker的权重是否相同,相同则直接random一下,否则根据权重加权取invoker。代码如下:

       int length = invokers.size(); // 总个数 int leastActive = -1; // 最小的活跃数 int leastCount = 0; // 相同最小活跃数的个数 int[] leastIndexs = new int[length]; // 相同最小活跃数的下标 int totalWeight = 0; // 总权重 int firstWeight = 0; // 第一个权重,用于于计算是否相同 boolean sameWeight = true; // 是否所有权重相同 for (int i = 0; i < length; i++) { Invoker<T> invoker = invokers.get(i); int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // 活跃数 int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // 权重 if (leastActive == -1 || active < leastActive) { // 发现更小的活跃数,重新开始 leastActive = active; // 记录最小活跃数 leastCount = 1; // 重新统计相同最小活跃数的个数 leastIndexs[0] = i; // 重新记录最小活跃数下标 totalWeight = weight; // 重新累计总权重 firstWeight = weight; // 记录第一个权重 sameWeight = true; // 还原权重相同标识 } else if (active == leastActive) { // 累计相同最小的活跃数 leastIndexs[leastCount ++] = i; // 累计相同最小活跃数下标 totalWeight += weight; // 累计总权重 // 判断所有权重是否一样 if (sameWeight && i > 0 && weight != firstWeight) { sameWeight = false; } } } // assert(leastCount > 0) if (leastCount == 1) { // 如果只有一个最小则直接返回 return invokers.get(leastIndexs[0]); } if (! sameWeight && totalWeight > 0) { // 如果权重不相同且权重大于0则按总权重数随机 int offsetWeight = random.nextInt(totalWeight); // 并确定随机值落在哪个片断上 for (int i = 0; i < leastCount; i++) { int leastIndex = leastIndexs[i]; offsetWeight -= getWeight(invokers.get(leastIndex), invocation); if (offsetWeight <= 0) return invokers.get(leastIndex); } } // 如果权重相同或权重为0则均等随机 return invokers.get(leastIndexs[random.nextInt(leastCount)]);

l   RoundRobinLoadBalance

记录一个调用次数的数字,然后每次调用时对总invoker取模,并在调用次数基础上自增;权重不同的时候,逻辑稍有不同,具体可以参考远嘛。主要代码如下:

        AtomicPositiveInteger sequence = sequences.get(key); if (sequence == null) { sequences.putIfAbsent(key, new AtomicPositiveInteger()); sequence = sequences.get(key); } // 取模轮循 return invokers.get(sequence.getAndIncrement() % length);

l   ConsistentHashLoadBalance

计算一致性hash的值,然后选取invoker。代码如下:

        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName(); int identityHashCode = System.identityHashCode(invokers); ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key); if (selector == null || selector.getIdentityHashCode() != identityHashCode) { selectors.put(key, new ConsistentHashSelector<T>(invokers, invocation.getMethodName(), identityHashCode)); selector = (ConsistentHashSelector<T>) selectors.get(key); } return selector.select(invocation);

2) Invoker

l  FactoryBean创建proxy的调用链:

ReferenceBean#getObject–>ReferenceBean#get–> ReferenceConfig#init–>ReferenceBean#createProxy。

在ReferenceBean#createProxy()方法中创建Invoker;通过Invoker创建proxy。

l  创建Invoker,并向zk注册监听的consumer。

RegistryProtocol#doRefer–>RegistryProtocol#doRefer–>FailbackRegistry#register–>FailbackRegistry#doRegister–>ZookeeperRegistry#doRegister–>zkClient#create

在RegistryProtocol#doRefer方法中,除了调用FailbackRegistry#register注册服务以外,还会调用RegistryDirectory#subscribe来订阅此服务,次操作会注册Listener。

Consumer url示例:

consumer://192.168.222.34/com.wzf.funny.service.RpcService?application=weixin&category=consumers&check=false&dubbo=2.5.3&interface=com.wzf.funny.service.RpcService&methods=sayHello&pid=44244&retries=0&revision=0.1.0-SNAPSHOT&side=consumer&timeout=5000&timestamp=1502795345908&version=dev

3) InvokerInvocationHandler

示例代码中com.alibaba.dubbo.config.spring.ReferenceBean是一个FactoryBean,通过context.getBean方法获取的是ReferenceBean#getObject方法的返回结果,ReferenceBean#getObject()方法返回的是一个proxy对象,此proxy持有一个InvokerInvocationHandler属性,如下图所示

025963eda2ad351ebdc3bdba143e665416b3f2ec

rpc调用示例代码如下:

rpcService.sayHello()

rpcService是一个proxy对象(ReferenceBean#getObject()返回的对象),当调用sayHello()方法时,最终由InvokerInvocationHandler#invoker处理。

5. 多线程下的通信

DubboInvoker#doInvoke方法中,在ExchangeClient#request(inv, timeout)调用时,返回一个DefaultFuture对象,接着会调用DefaultFuture.get()方法(等待返回结果)。

对于consumer端而言,服务器会为每一个请求创建一个线程,因为rpc操作是一个慢动作,为了节省资源,当线程发送rpc请求后,需要让当前线程释放资源、进入等待队列,当获取到返回结果以后,再唤醒这个线程。

RPC请求的过程为:每一个RPC请求都有一个唯一的id,RPC请求的时候,会将此id也发送给provider;provider处理完请求后会将此id和返回结果一同返回给consumer;consumer收到返回信息以后解析出id,然后从FUTURES中找到相对应的DefaultFuture,并通过DefaultFuture.done#signal()唤醒之前等待线程。

下面根据源码详细讨论一下多线程情况下rpc请求的细节,即dubbo多线程模型的实现。

1) DefaultFuture#field

这里列出了与多线程相关的几个重要的属性

 private final Lock                            lock = new ReentrantLock(); private final Condition done = lock.newCondition(); private static final Map<Long, DefaultFuture> FUTURES = new ConcurrentHashMap<Long, DefaultFuture>();



2) DefaultFuture#构造函数

创建好DefaultFuture对象以后,将DefaultFuture存入了FUTURES中。其实每一次请求,多会生成一个唯一的id,即对于每个服务器而言,id唯一。

 public DefaultFuture(Channel channel, Request request, int timeout){ this.channel = channel; this.request = request; this.id = request.getId(); this.timeout = timeout > 0 ? timeout : channel.getUrl().getPositiveParameter(Constants.TIMEOUT_KEY, Constants.DEFAULT_TIMEOUT); // put into waiting map. FUTURES.put(id, this); CHANNELS.put(id, channel); } 



3) DefaultFuture#get

主要逻辑是:获取锁,调用await方法,此时当前线程进入等待队列,此线程会有两种结果过:要么超时,要么被唤醒;如果被唤醒,则返回rpc的结果。

   public Object get(int timeout) throws RemotingException { if (timeout <= 0) { timeout = Constants.DEFAULT_TIMEOUT; } if (! isDone()) { long start = System.currentTimeMillis(); lock.lock(); try { while (! isDone()) { done.await(timeout, TimeUnit.MILLISECONDS); if (isDone() || System.currentTimeMillis() - start > timeout) { break; } } } catch (InterruptedException e) { throw new RuntimeException(e); } finally { lock.unlock(); } if (! isDone()) { throw new TimeoutException(sent > 0, channel, getTimeoutMessage(false)); } } return returnFromResponse(); }

4) DefaultFuture#received

收到返回结果时,调用此方法。首先从FUTURES中根据id获取DefaultFuture,如果不存在,打印一条日志;如果存在则通过signal释放一个唤醒信号,将线程从等待队列中唤醒。

public static void received(Channel channel, Response response) { try { DefaultFuture future = FUTURES.remove(response.getId()); if (future != null) { future.doReceived(response); } else { logger.warn("The timeout response finally returned at ")。 } } finally { CHANNELS.remove(response.getId()); } } private void doReceived(Response res) { lock.lock(); try { response = res; if (done != null) { done.signal(); } } finally { lock.unlock(); } if (callback != null) { invokeCallback(callback); } }

5) DefaultFuture#RemotingInvocationTimeoutScan

 

以下代码是用来从FUTURES清理rpc请求超时的DefaultFuture

private static class RemotingInvocationTimeoutScan implements Runnable { public void run() { while (true) { try { for (DefaultFuture future : FUTURES.values()) { if (future == null || future.isDone()) { continue; } if (System.currentTimeMillis() - future.getStartTimestamp() > future.getTimeout()) { // create exception response. Response timeoutResponse = new Response(future.getId()); // set timeout status. timeoutResponse.setStatus(future.isSent() ? Response.SERVER_TIMEOUT : Response.CLIENT_TIMEOUT); timeoutResponse.setErrorMessage(future.getTimeoutMessage(true)); // handle response. DefaultFuture.received(future.getChannel(), timeoutResponse); } } Thread.sleep(30); } catch (Throwable e) { logger.error("Exception when scan the timeout invocation of remoting.", e); } } } } static { Thread th = new Thread(new RemotingInvocationTimeoutScan(), "DubboResponseTimeoutScanTimer"); th.setDaemon(true); th.start(); }


四、   RPC调用流程

1. 简化流程图

a052e2349ce7c26649038a93b50294beec95d773

 

此流程图是一个简化的流程图,主要描述dubbo调用的全过程。

RPC调用时,Consumer根据负载均衡算法获取invoker,在执行完filter链以后,就开始平装数据,发送数据到socket中,consumer这一端通过ReentrantLock进入await状态。

Provider从socket获取数据后,执行receive方法, 接着执行Filter链,接着找到invoker通过代理对象执行Service,最后将返回结果写入socket。

Consumer收到返回结果以后,唤醒之前await的内容,然后将返回结果返回给调用方。

2. 完整流程图

515e972f356dd3ba7bed6c0f6e2222050c999d37

如上图所示,这是一个完整的调用流程图,包括了执行过程中主要的类和方法。

后续内容主要是对次流程图的详细描述,如果次流程图已经完全清晰,可以忽略后面的内容。

五、 consumer端远程调用请求链

对远程方法的调用,其实是对InvokerInvocationHandler#invoke的调用。

1. InvokerHandler

1) InvokerInvocationHandler#invoke

对执行方法做简单处理(toString、hashCode、equals这些方法不调用远程接口)后,执行MockClusterInvoker#invoke方法。

        if (method.getDeclaringClass() == Object.class) { return method.invoke(invoker, args); } if ("toString".equals(methodName) && parameterTypes.length == 0) { return invoker.toString(); } if ("hashCode".equals(methodName) && parameterTypes.length == 0) { return invoker.hashCode(); } if ("equals".equals(methodName) && parameterTypes.length == 1) { return invoker.equals(args[0]); } return invoker.invoke(new RpcInvocation(method, args)).recreate();

2) MockClusterInvoker#invoke

检查是否是mock,如果是,mock返回结果;如果不是的话进入FailoverClusterInvoker#invoke方法。

        String value = directory.getUrl().getMethodParameter(invocation.getMethodName(), Constants.MOCK_KEY, Boolean.FALSE.toString()).trim(); if (value.length() == 0 || value.equalsIgnoreCase("false")){ //no mock result = this.invoker.invoke(invocation); } else if (value.startsWith("force")) { //force:direct mock result = doMockInvoke(invocation, null); } else { //fail-mock result = this.invoker.invoke(invocation); }



2. 解析出loadBalance,通过loadBalance算法获取Invoker对象。

1) FailoverClusterInvoker#invoke方法

先执行父类AbstractClusterInvoker#invoke方法,获取List<Invoker<T>> invokers,loadBanlace;然后调用FailoverClusterInvoker#doInvoke方法。

        LoadBalance loadbalance;
        List<Invoker<T>> invokers = list(invocation); if (invokers != null && invokers.size() > 0) { loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(invokers.get(0).getUrl().getMethodParameter(invocation.getMethodName(),Constants.LOADBALANCE_KEY, Constants.DEFAULT_LOADBALANCE)); } else { loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(Constants.DEFAULT_LOADBALANCE); } RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation); return doInvoke(invocation, invokers, loadbalance);



2) FailoverClusterInvoker#doInvoke

循环1+retries次,知道成功或者重试次数耗尽,每次都先通过父类AbstractClusterInvoker#doselect方法获取invoker;然后执行invoker.invoke(),这个方法会进入一个调用链。

其中需要注意的是,重试获取invoker的时候,需要间检查是否有invokers被销毁,invokers是否都可用

checkWheatherDestoried();
       copyinvokers = list(invocation); //重新检查一下 checkInvokers(copyinvokers, invocation);



3) AbstractClusterInvoker#doselect

如果没有可用的invoker,直接返回;如果只有一个invoker,那么直接返回;如果有两个invoker,改成轮询算法,即如果上次使用了invokers.get(0),这次就直接使用invokers.get(1);如果有更多invoker,则通过loadBalance进行选择;如果之前的选中列表中已经包含了此次选中的invoker,那么重新选择。Dubbo默认使用random方式进行负载均衡。

         if (invokers == null || invokers.size() == 0) return null; if (invokers.size() == 1) return invokers.get(0); // 如果只有两个invoker,退化成轮循 if (invokers.size() == 2 && selected != null && selected.size() > 0) { return selected.get(0) == invokers.get(0) ? invokers.get(1) : invokers.get(0); } Invoker<T> invoker = loadbalance.select(invokers, getUrl(), invocation); //如果 selected中包含(优先判断) 或者 不可用&&availablecheck=true 则重试. if( (selected != null && selected.contains(invoker)) ||(!invoker.isAvailable() && getUrl()!=null && availablecheck)){ try{ Invoker<T> rinvoker = reselect(loadbalance, invocation, invokers, selected, availablecheck); if(rinvoker != null){ invoker = rinvoker; }else{ //看下第一次选的位置,如果不是最后,选+1位置. int index = invokers.indexOf(invoker); try{ //最后在避免碰撞 invoker = index <invokers.size()-1?invokers.get(index+1) :invoker; }catch (Exception e) { logger.warn(e.getMessage()+" may because invokers list dynamic change, ignore.",e); } } }catch (Throwable t){ logger.error("clustor relselect fail reason is :"+t.getMessage() +" if can not slove ,you can set cluster.availablecheck=false in url",t); } }

4) RandomLoadBalance#doSelect

先根据定义的weight(默认为100)对每个invoker进行加权,然后随机取出一个。

        int length = invokers.size(); // 总个数 int totalWeight = 0; // 总权重 boolean sameWeight = true; // 权重是否都一样 for (int i = 0; i < length; i++) { int weight = getWeight(invokers.get(i), invocation); totalWeight += weight; // 累计总权重 if (sameWeight && i > 0 && weight != getWeight(invokers.get(i - 1), invocation)) { sameWeight = false; // 计算所有权重是否一样 } } if (totalWeight > 0 && ! sameWeight) { // 如果权重不相同且权重大于0则按总权重数随机 int offset = random.nextInt(totalWeight); // 并确定随机值落在哪个片断上 for (int i = 0; i < length; i++) { offset -= getWeight(invokers.get(i), invocation); if (offset < 0) { return invokers.get(i); } } } // 如果权重相同或权重为0则均等随机 return invokers.get(random.nextInt(length));

3. 执行invoke的Filter链。

调用链是在xml加载的时候注册进来的;执行时按照以下顺序执行调用链中的invoke方法。

com.alibaba.dubbo.rpc.filter.ConsumerContextFilter,

com.alibaba.dubbo.rpc.protocol.dubbo.filter.FutureFilter,

com.alibaba.dubbo.monitor.support.MonitorFilter

4. 执行invoke逻辑。

1)    AbstractInvoker#invoke

设置invocation信息,包括invoker、interface、sync、context等。

        RpcInvocation invocation = (RpcInvocation) inv;
        invocation.setInvoker(this); if (attachment != null && attachment.size() > 0) { invocation.addAttachmentsIfAbsent(attachment); } Map<String, String> context = RpcContext.getContext().getAttachments(); if (context != null) { invocation.addAttachmentsIfAbsent(context); } if (getUrl().getMethodParameter(invocation.getMethodName(), Constants.ASYNC_KEY, false)){ invocation.setAttachment(Constants.ASYNC_KEY, Boolean.TRUE.toString()); } RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation); return doInvoke(invocation); 

2) DubboInvoker#doInvoke

设置Invocation的属性,获取ExchangeClient,并执行request请求。

        RpcInvocation inv = (RpcInvocation) invocation;
        final String methodName = RpcUtils.getMethodName(invocation); inv.setAttachment(Constants.PATH_KEY, getUrl().getPath()); inv.setAttachment(Constants.VERSION_KEY, version); ExchangeClient currentClient; if (clients.length == 1) { currentClient = clients[0]; } else { currentClient = clients[index.getAndIncrement() % clients.length]; } RpcContext.getContext().setFuture(null); return (Result) currentClient.request(inv, timeout).get();

3)  DefaultFuture#get

进入await,等待provider返回结果。

        if (timeout <= 0) { timeout = Constants.DEFAULT_TIMEOUT; } if (! isDone()) { long start = System.currentTimeMillis(); lock.lock(); try { while (! isDone()) { done.await(timeout, TimeUnit.MILLISECONDS); if (isDone() || System.currentTimeMillis() - start > timeout) { break; } } } catch (InterruptedException e) { throw new RuntimeException(e); } finally { lock.unlock(); } if (! isDone()) { throw new TimeoutException(sent > 0, channel, getTimeoutMessage(false)); } } return returnFromResponse();

5. request远程数据

1) HeaderExchangeChannel#requst

创建Reuqest,并通过NettyClient发送请求。在创建DefaultFuture时,会将次DefaultFuture放入FUTURES(一个ConcurrentHashMap)中,也会将Channel放入CHANNELS(一个ConcurrentHashMap)中。

        Request req = new Request(); req.setVersion("2.0.0"); req.setTwoWay(true); req.setData(request); DefaultFuture future = new DefaultFuture(channel, req, timeout); channel.send(req); return future;

2) NettyClient#request

获取NettyChannel,并通过NettyChannel发送消息

        Channel channel = getChannel(); if (channel == null || ! channel.isConnected()) { throw new RemotingException(this, "message can not send, because channel is closed . url:" + getUrl()); } channel.send(message, sent);

3) NettyChannel#send

通过NioClientSocketChannel.write将数据通过socket发送出去。

        boolean success = true; int timeout = 0; try { ChannelFuture future = channel.write(message); if (sent) { timeout = getUrl().getPositiveParameter(Constants.TIMEOUT_KEY, Constants.DEFAULT_TIMEOUT); success = future.await(timeout); } Throwable cause = future.getCause(); if (cause != null) { throw cause; } } catch (Throwable e) { throw new RemotingException(this, "Failed to send message " + message + " to " + getRemoteAddress() + ", cause: " + e.getMessage(), e); }

6. 消息示例 

Request [id=1, version=2.0.0, twoway=true, event=false, broken=false, data=RpcInvocation [methodName=generateArticle, parameterTypes=[long, class java.util.Date], arguments=[1, Sat Jul 29 15:46:46 CST 2017], attachments={path=com.wzf.funny.service.ArticleService, interface=com.wzf.funny.service.ArticleService, version=dev, timeout=500000}]]

六、 consumer端返回结果调用链

1. 处理从channel中获取的数据,执行Received方法

1) SimpleChannelHandler#handleUpstream

位于netty.jar中,是response的入口

if (e instanceof MessageEvent) { messageReceived(ctx, (MessageEvent) e); }

2) NettyHandler#messageReceived

获取NettyChannel并执行received方法

NettyChannel channel = NettyChannel.getOrAddChannel(ctx.getChannel(), url, handler); try { handler.received(channel, e.getMessage()); } finally { NettyChannel.removeChannelIfDisconnected(ctx.getChannel()); }

3) AbstractPeer#received

先判断channel是否关闭,然后直接调用HeartbeatHandler#received方法

if (closed) { return; } handler.received(ch, msg);


 

4) HeartbeatHandler#received

判断是否与心跳相关的,如果不是调用MultiMessageHandler#received方法。

setReadTimestamp(channel);
        if (isHeartbeatRequest(message)) { Request req = (Request) message; if (req.isTwoWay()) { Response res = new Response(req.getId(), req.getVersion()); res.setEvent(Response.HEARTBEAT_EVENT); channel.send(res); } return; } if (isHeartbeatResponse(message)) { return; } handler.received(channel, message); }



5) MultiMessageHandler#received

如果是MultiMessage则循环调用AllChannelHandler#received;如果不是直接调用AllChannelHandler#received

if (message instanceof MultiMessage) { MultiMessage list = (MultiMessage)message; for(Object obj : list) { handler.received(channel, obj); } } else { handler.received(channel, message); }

6) AllChannelHandler#received

先取得一个线程池,然后执行接收消息的线程ChannelEventRunnable。

ExecutorService cexecutor = getExecutorService(); try { cexecutor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message)); } catch (Throwable t) { throw new ExecutionException(message, channel, getClass() + " error when process received event .", t); }

7) ChannelEventRunnable#run

根据ChanaelState不同,进入不同的处理逻辑。

switch (state) { case CONNECTED: handler.connected(channel); break; case DISCONNECTED: handler.disconnected(channel); break; case SENT: handler.sent(channel,message); break; case RECEIVED: handler.received(channel, message); break; case CAUGHT: handler.caught(channel, exception); break; default: logger.warn("unknown state: " + state + ", message is " + message);

8) DecodeHandler#received

从message中获取Result,并decode;然后调用HeaderExchangeHandler#received方法。

if (message instanceof Decodeable) { decode(message); } if (message instanceof Request) { decode(((Request)message).getData()); } if (message instanceof Response) { decode( ((Response)message).getResult()); } handler.received(channel, message);

9) HeaderExchangeHandler#received

根据message的类型,进入不同处理逻辑,这里会进入handleResponse方法。

channel.setAttribute(KEY_READ_TIMESTAMP, System.currentTimeMillis()); ExchangeChannel exchangeChannel = HeaderExchangeChannel.getOrAddChannel(channel); try { if (message instanceof Request) { // handle request. } else if (message instanceof Response) { handleResponse(channel, (Response) message); } else if (message instanceof String) { // handle string. } else { handler.received(exchangeChannel, message); } } finally { HeaderExchangeChannel.removeChannelIfDisconnected(channel); }

10) HeaderExchangeHandler#handleResponse

如果不是心跳消息,那么通过DefaultFuture.received来接收消息。

if (response != null && !response.isHeartbeat()) { DefaultFuture.received(channel, response); } 



2. 唤醒await的内容,继续之前的调用执行

1) DefaultFuture#received

从FUTURES中(一个ConcurrentHasMap)根据删除这个DafaultFutrue,并调用DefaultFutrue#doReceived方法。

try {
       DefaultFuture future = FUTURES.remove(response.getId()); if (future != null) { future.doReceived(response); } else { logger.warn("The timeout response finally returned at 。。。。。" ); } } finally { CHANNELS.remove(response.getId()); }

2) DefaultFuture#doReceived

先上锁,然后唤醒之前await的内容。

lock.lock(); try { response = res; if (done != null) { done.signal(); } } finally { lock.unlock(); } if (callback != null) { invokeCallback(callback); }

3) DefaultFuture#get

被唤醒后跳出while循环,调用returnFromResponse方法,拿到返回结果以后就可以继续之前DubboInvoker#doInvoke的调用了。

if (timeout <= 0) { timeout = Constants.DEFAULT_TIMEOUT; } if (! isDone()) { long start = System.currentTimeMillis(); lock.lock(); try { while (! isDone()) { done.await(timeout, TimeUnit.MILLISECONDS); if (isDone() || System.currentTimeMillis() - start > timeout) { break; } } } catch (InterruptedException e) { throw new RuntimeException(e); } finally { lock.unlock(); } if (! isDone()) { throw new TimeoutException(sent > 0, channel, getTimeoutMessage(false)); } } return returnFromResponse();

4) DefaultFuture#returnFromResponse

判断返回结果:如果返回结果为空,则返回IllegalStateException;如果成功,则返回result信息;如果客户端/服务端超时,则返回TimeoutException;如果其他错误,返回RemotingException。

Response res = response;
        if (res == null) { throw new IllegalStateException("response cannot be null"); } if (res.getStatus() == Response.OK) { return res.getResult(); } if (res.getStatus() == Response.CLIENT_TIMEOUT || res.getStatus() == Response.SERVER_TIMEOUT) { throw new TimeoutException(res.getStatus() == Response.SERVER_TIMEOUT, channel, res.getErrorMessage()); } throw new RemotingException(channel, res.getErrorMessage());

七、 Provider端响应Rpc请求

1. 处理从channel中获取的数据,执行Received方法

此过程和Consumer端收到返回结果后,处理返回结果的流程基本相同,唯一不同的地方是,在最后一步,进入的是HeaderExchangeHandler#handleRequest方法

1) HeaderExchangeHandler#handleRequest

调用通过DubboProtocol#replay来处理rpc请求

 Response res = new Response(req.getId(), req.getVersion()); Object msg = req.getData(); // handle data. Object result = handler.reply(channel, msg); res.setStatus(Response.OK); res.setResult(result); return res;

2. 获取invoker,执行invoke方法。

1)    DubboProtocol#reply

根据message获取invoker对象,然后执行invoke方法,此调用会先进入一个拦截器链。

if (message instanceof Invocation) { Invocation inv = (Invocation) message; Invoker<?> invoker = getInvoker(channel, inv); //如果是callback 需要处理高版本调用低版本的问题 RpcContext.getContext().setRemoteAddress(channel.getRemoteAddress()); return invoker.invoke(inv); } throw new RemotingException(channel, "Unsupported request: ");



3. 执行Filter链

1) Filter链

l   com.alibaba.dubbo.rpc.filter.EchoFilter

methodName中包括$echo时,直接返回结果。

l   com.alibaba.dubbo.rpc.filter.ClassLoaderFilter

invoke前将ContextClassLoader设置为接口的ClassLoader,调用结束后将ContextClassLoader为当前线程的ContextClassLoader。

l   com.alibaba.dubbo.rpc.filter.GenericFilter

主要是针对泛化接口的实现。

l   com.alibaba.dubbo.rpc.filter.ContextFilter

对RpcContext进行赋值。

l   com.alibaba.dubbo.rpc.protocol.dubbo.filter.TraceFilter

方法调用的跟踪

l   com.alibaba.dubbo.monitor.support.MonitorFilter

监控rpc调用情况。

l   com.alibaba.dubbo.rpc.filter.TimeoutFilter

超时后,只是留了一个日志。

l   com.alibaba.dubbo.rpc.filter.ExceptionFilter

异常处理

4. Invoker

1) InvokerWrapper#invoke

无业务逻辑,只是一层封装。

 public Result invoke(Invocation invocation) throws RpcException { return invoker.invoke(invocation); }



2) AbstractProxyInvoker#invoke

封装返回结果。

public Result invoke(Invocation invocation) throws RpcException { return new RpcResult(doInvoke(proxy, invocation.getMethodName(), invocation.getParameterTypes(), invocation.getArguments())); }

3) JavassistProxyFactory#getInvoker

在之前调用getInvoier的时候,会创建一个内部类,AbstractProxyInvoker# doInvoke方法会触发次内部内的执行。

其中proxy就是Provider中定义的ref,即rpcServiceImpl。

另外除了JavassistProxyFactory 以外,还有一个JdkProxyFactory。

    public <T> Invoker<T> getInvoker(T proxy, Class<T> type, URL url) { // TODO Wrapper类不能正确处理带$的类名 final Wrapper wrapper = Wrapper.getWrapper(proxy.getClass().getName().indexOf('$') < 0 ? proxy.getClass() : type); return new AbstractProxyInvoker<T>(proxy, type, url) { @Override protected Object doInvoke(T proxy, String methodName, Class<?>[] parameterTypes, Object[] arguments) throws Throwable { return wrapper.invokeMethod(proxy, methodName, parameterTypes, arguments); } }; } 

猜你喜欢

转载自www.cnblogs.com/wujinsen/p/9854295.html