9.触摸屏驱动移植实战

版权声明:转载请声明 https://blog.csdn.net/qq_40732350/article/details/83216134

1.触摸屏驱动概览##########################

1.1、常用的2种触摸屏
(1)电阻触摸屏。驱动一般分2种:一种是SoC内置触摸屏控制器,一种是外置的专门触摸屏控制芯片,通过I2C接口和SoC通信。
(2)电容触摸屏。驱动只有一种,外接专用的电容式触摸屏控制芯片,I2C接口和SoC通信。
1.2、X210使用的触摸屏
(1)X210V3使用的触摸屏:ft5x06
(2)X210V3S使用的触摸屏:gslX680
1.3、学习触摸屏驱动的关键点
(1)input子系统相关知识
(2)中断上下半部
(3)I2C子系统
(4)触摸屏芯片本身知识
1.4、竞争状态和同步


2_3.内核中的竞争状态和互斥##########################

2.1、一些概念
(1)竞争状态(简称竟态)
(2)临界段、互斥锁、死锁
(3)同步(多CPU、多任务、中断)
2.2、解决竟态的方法
(1)原子操作 automic_t
(2)信号量、互斥锁
(3)自旋锁
2.3、自旋锁和信号量的使用要点
(1)自旋锁不能递归
(2)自旋锁可以用在中断上下文(信号量不可以,因为可能睡眠),但是在中断上下文中获取自旋锁之前要先禁用本地中断
(3)自旋锁的核心要求是:拥有自旋锁的代码必须不能睡眠,要一直持有CPU直到释放自旋锁
(4)信号量和读写信号量适合于保持时间较长的情况,它们会导致调用者睡眠,因此只能在进程上下文使用,而自旋锁适合于保持时间非常短的情况,它可以在任何上下文使用。如果被保护的共享资源只在进程上下文访问,使用信号量保护该共享资源非常合适,如果对共享资源的访问时间非常短,自旋锁也可以。但是如果被保护的共享资源需要在中断上下文访问(包括底半部即中断处理句柄和顶半部即软中断),就必须使用自旋锁。自旋锁保持期间是抢占失效的,而信号量和读写信号量保持期间是可以被抢占的。自旋锁只有在内核可抢占或SMP(多处理器)的情况下才真正需要,在单CPU且不可抢占的内核下,自旋锁的所有操作都是空操作。


4.中断的上下半部1################################

4.1、中断处理的注意点
(1)中断上下文,不能和用户空间数据交互
(2)不能交出CPU(不能休眠、不能schedule)
(3)ISR运行时间尽可能短,越长则系统响应特性越差
4.2、中断下半部2种解决方案
(1)为什么要分上半部(top half,又叫顶半部)和下半部(bottom half,又叫底半部)
(2)下半部处理策略1:tasklet(小任务)
(3)下半部处理策略2:workqueue(工作队列)
4.3、tasklet使用实战
(1)tasklet相关接口介绍
(2)实战演示tasklet实现下半部


5.中断的上下半部2##########################################


5.1、workqueue实战演示
(1)workqueue的突出特点是下半部会交给worker thead,因此下半部处于进程上下文,可以被调度,因此可以睡眠。
(2)include/linux/workqueue.h

5.2、中断上下半部处理原则
(1)必须立即进行紧急处理的极少量任务放入在中断的顶半部中,此时屏蔽了与自己同类型的中断,由于任务量少,所以可以迅速不受打扰地处理完紧急任务。
(2)需要较少时间的中等数量的急迫任务放在tasklet中。此时不会屏蔽任何中断(包括与自己的顶半部同类型的中断),所以不影响顶半部对紧急事务的处理;同时又不会进行用户进程调度,从而保证了自己急迫任务得以迅速完成。
(3)需要较多时间且并不急迫(允许被操作系统剥夺运行权)的大量任务放在workqueue中。此时操作系统会尽量快速处理完这个任务,但如果任务量太大,期间操作系统也会有机会调度别的用户进程运行,从而保证不会因为这个任务需要运行时间将其它用户进程无法进行。
(4)可能引起睡眠的任务放在workqueue中。因为在workqueue中睡眠是安全的。在需要获得大量的内存时、在需要获取信号量时,在需要执行阻塞式的I/O操作时,用workqueue很合适。


6_7.linux内核的I2C子系统详解###########################

6.1、I2C总线汇总概览
(1)三根通信线:SCL、SDA、GND
(2)同步、串行、电平、低速、近距离
(3)总线式结构,支持多个设备挂接在同一条总线上
(4)主从式结构,通信双方必须一个为主(master)一个为从(slave),主设备掌握每次通信的主动权,从设备按照主设备的节奏被动响应。每个从设备在总线中有唯一的地址(slave address),主设备通过从地址找到自己要通信的从设备(本质是广播)。
(5)I2C主要用途就是主SoC和外围设备之间的通信,最大优势是可以在总线上扩展多个外围设备的支持。常见的各种物联网传感器芯片(如gsensor、温度、湿度、光强度、酸碱度、烟雾浓度、压力等)均使用I2C接口和主SoC进行连接。
(6)电容触摸屏芯片的多个引脚构成2个接口。一个接口是I2C的,负责和主SoC连接(本身作为从设备),主SoC通过该接口初始化及控制电容触摸屏芯片、芯片通过该接口向SoC汇报触摸事件的信息(触摸坐标等),我们使用电容触摸屏时重点关注的是这个接口;另一个接口是电容触摸板的管理接口,电容触摸屏芯片通过该接口来控制触摸板硬件。该接口是电容触摸屏公司关心的,他们的触摸屏芯片内部固件编程要处理这部分,我们使用电容触摸屏的人并不关心这里。
6.2、linux内核的I2C驱动框架总览
(1)I2C驱动框架的主要目标是:让驱动开发者可以在内核中方便的添加自己的I2C设备的驱动程序,从而可以更容易的在linux下驱动自己的I2C接口硬件
(2)源码中I2C相关的驱动均位于:drivers/i2c目录下。linux系统提供2种I2C驱动实现方法:第一种叫i2c-dev,对应drivers/i2c/i2c-dev.c,这种方法只是封装了主机(I2C master,一般是SoC中内置的I2C控制器)的I2C基本操作,并且向应用层提供相应的操作接口,应用层代码需要自己去实现对slave的控制和操作,所以这种I2C驱动相当于只是提供给应用层可以访问slave硬件设备的接口,本身并未对硬件做任何操作,应用需要实现对硬件的操作,因此写应用的人必须对硬件非常了解,其实相当于传统的驱动中干的活儿丢给应用去做了,所以这种I2C驱动又叫做“应用层驱动”,这种方式并不主流,它的优势是把差异化都放在应用中,这样在设备比较难缠(尤其是slave是非标准I2C时)时不用动驱动,而只需要修改应用就可以实现对各种设备的驱动。这种驱动在驱动层很简单(就是i2c-dev.c)我们就不分析了。
(3)第二种I2C驱动是所有的代码都放在驱动层实现,直接向应用层提供最终结果。应用层甚至不需要知道这里面有I2C存在,譬如电容式触摸屏驱动,直接向应用层提供/dev/input/event1的操作接口,应用层编程的人根本不知道event1中涉及到了I2C。这种是我们后续分析的重点。


8.linux内核的I2C子系统详解3####################################

8.1、I2C子系统的4个关键结构体
(1)struct i2c_adapter            I2C适配器
(2)struct i2c_algorithm            I2C算法
(3)struct i2c_client            I2C(从机)设备信息
(4)struct i2c_driver            I2C(从机)设备驱动
8.2、关键文件
(1)i2c-core.c
(2)busses目录
(3)algos目录


9.linux内核的I2C子系统详解4####################################

9.1、i2c-core.c初步分析
(1)smbus代码略过
(2)模块加载和卸载:bus_register(&i2c_bus_type);
9.2、I2C总线的匹配机制
(1)match函数
(2)probe函数
总结:I2C总线上有2条分支:i2c_client链和i2c_driver链,当任何一个driver或者client去注册时,I2C总线都会调用match函数去对client.name和driver.id_table.name进行循环匹配。如果driver.id_table中所有的id都匹配不上则说明client并没有找到一个对应的driver,没了;如果匹配上了则标明client和driver是适用的,那么I2C总线会调用自身的probe函数,自身的probe函数又会调用driver中提供的probe函数,driver中的probe函数会对设备进行硬件初始化和后续工作。
9.3、核心层开放给其他部分的注册接口
(1)i2c_add_adapter/i2c_add_numbered_adapter        注册adapter的
(2)i2c_add_driver                                注册driver的
(3)i2c_new_device                                注册client的


10.linux内核的I2C子系统详解5####################################

10.1、adapter模块的注册
(1)平台总线方式注册
(2)找到driver和device,并且确认其配对过程
(3)probe函数
10.2、probe函数分析
(1)填充一个i2c_adapter结构体,并且调用接口去注册之
(2)从platform_device接收硬件信息,做必要的处理(request_mem_region & ioremap、request_irq等)
(3)对硬件做初始化(直接操作210内部I2C控制器的寄存器)
10.3、i2c_algorithm
(1)i2c->adap.algo    = &s3c24xx_i2c_algorithm;
(2)functionality
(3)s3c24xx_i2c_doxfer


11_12.linux内核的I2C子系统详解##########################

11.1、i2c_driver的注册
(1)以gslX680的驱动为例
(2)将驱动添加到内核SI项目中
(3)i2c_driver的基本分析:name和probe
11.2、i2c_client从哪里来
(1)直接来源:i2c_register_board_info
smdkc110_machine_init
    i2c_register_board_info
    
struct i2c_board_info {
    char        type[I2C_NAME_SIZE];            // 设备名
    unsigned short    flags;                        // 属性
    unsigned short    addr;                        // 设备从地址
    void        *platform_data;                    // 设备私有数据
    struct dev_archdata    *archdata;
#ifdef CONFIG_OF
    struct device_node *of_node;
#endif
    int        irq;                                // 设备使用的IRQ号,对应CPU的EINT
};

(2)实现原理分析
内核维护一个链表 __i2c_board_list,这个链表上链接的是I2C总线上挂接的所有硬件设备的信息结构体。也就是说这个链表维护的是一个struct i2c_board_info结构体链表。
真正的需要的struct i2c_client在别的地方由__i2c_board_list链表中的各个节点内容来另外构建生成。

函数调用层次:
i2c_add_adapter/i2c_add_numbered_adapter
    i2c_register_adapter
        i2c_scan_static_board_info
            i2c_new_device
                device_register

总结:I2C总线的i2c_client的提供是内核通过i2c_add_adapter/i2c_add_numbered_adapter接口调用时自动生成的,生成的原料是mach-x210.c中的i2c_register_board_info(1, i2c_devs1, ARRAY_SIZE(i2c_devs1));


13.gslX680驱动的移植实践####################################

13.1、初步移植实验
(1)源码获取
(2)源码加入内核中
(3)mach文件中添加board_info
(4)编译后内核去启动
13.2、在内核配置中添加CONFIG项
(1)定义一个宏名,譬如CONFIG_TOUCHSCREEN_GSLX680
(2)在代码中使用宏来条件编译
(3)在Makefile中使用宏来条件配置
(4)在Kconfig项目中添加宏的配置项
(5)make menuconfig并选择Y或者N


14_15.gslX680驱动源码分析1_2####################################


16.老版本触摸屏的驱动
16.1、ft5x06驱动移植实践
16.2、ft5x06驱动源码分析


 

猜你喜欢

转载自blog.csdn.net/qq_40732350/article/details/83216134