Java集合框架HashTable源码的解析

HashTable是和HashMap很类似的,但是有个区别是,前者线程安全啊,后者线程不安全啊,前者线程安全主要是方法上写了这个关键字synchronized
首先看一下HashTable的继承关系

java.lang.Object
   ↳     java.util.Dictionary<K, V>
         ↳     java.util.Hashtable<K, V>
 
public class Hashtable<K,V> extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable { }

我们可以看出,HashTable不但继承了Dictionary,而且实现了Map、Cloneable和Serializable接口,所以HashTable也可以实例化。HashTable和hashMap不同,HashTable是线程安全的(等会我们在源码中就能看出)。下面我们先总览一下HashTable都有哪些API,然后我们详细分析它们。



synchronized void                clear()
synchronized Object              clone()
             boolean             contains(Object value)
synchronized boolean             containsKey(Object key)
synchronized boolean             containsValue(Object value)
synchronized Enumeration<V>      elements()
synchronized Set<Entry<K, V>>    entrySet()
synchronized boolean             equals(Object object)
synchronized V                   get(Object key)
synchronized int                 hashCode()
synchronized boolean             isEmpty()
synchronized Set<K>              keySet()
synchronized Enumeration<K>      keys()
synchronized V                   put(K key, V value)
synchronized void                putAll(Map<? extends K, ? extends V> map)
synchronized V                   remove(Object key)
synchronized int                 size()
synchronized String              toString()
synchronized Collection<V>       values()
        从HashTable的API中可以看出,HashTable之所以是

从HashTable的API中可以看出,HashTable之所以是线程安全的,是因为方法上都加了synchronized关键字。
2.1 存储结构
和HashMap一样,HashTable内部也维护了一个数组,数组中存放的是Entry<K,V>实体,数组定义如下:

private transient Entry<K,V>[] table;

Entry实体

/**
 * Entry实体类的定义
 */
private static class Entry<K,V> implements Map.Entry<K,V> {
    int hash; //哈希值
    final K key;
    V value;
    Entry<K,V> next; //指向的下一个Entry,即链表的下一个节点
 
    //构造方法
    protected Entry(int hash, K key, V value, Entry<K,V> next) {
        this.hash = hash;
        this.key =  key;
        this.value = value;
        this.next = next;
    }
    //由于HashTable实现了Cloneable接口,所以支持克隆操作
    protected Object clone() {
        return new Entry<>(hash, key, value, (next==null ? null : (Entry<K,V>) next.clone()));
    }
 
    //下面对Map.Entry的具体操作了
 
    public K getKey() { //拿到key
        return key;
    }
 
    public V getValue() { //拿到value
        return value;
    }
 
    public V setValue(V value) { //设置value
        if (value == null) //从这里可以看出,HashTable中的value是不允许为空的!
            throw new NullPointerException();
 
        V oldValue = this.value;
        this.value = value;
        return oldValue;
    }
    //判断两个Entry是否相等
    public boolean equals(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Map.Entry<?,?> e = (Map.Entry)o;
        //必须两个Entry的key和value均相等才行
        return key.equals(e.getKey()) && value.equals(e.getValue());
    }
 
    public int hashCode() { //计算hashCode
        return (Objects.hashCode(key) ^ Objects.hashCode(value));
    }
 
    public String toString() { //重写toString方法
        return key.toString()+"="+value.toString();
    }
}

从Entry实体的源码中可以看出,HashTable其实就是个存储Entry的数组,Entry中包含了键值对以及下一个Entry(用来处理冲突的),形成链表。而且Entry中的value是不允许为nul的。好了,我们对HashTable整体上了解了后,下面开始详细分析HashTable中的源码。
3.HashTable源码分析(基于JDK1.7)
3.1 成员属性
首先我们看看HashTable都有哪些关键属性:

private transient Entry<K,V>[] table;
 
private transient int count;//记录HashTable中有多少Entry实体
 
//阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)
private int threshold;
 
private float loadFactor; // 加载因子
 
 
private transient int modCount = 0; // Hashtable被改变的次数,用于fail-fast
 
// 序列版本号
private static final long serialVersionUID = 1421746759512286392L;
 
//最大的门限阈值,不能超过这个
static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;

这写成员属性的功能和HashMap基本上都一样的,这里就不再赘述了,详细信息可以看下上一篇博文HashMap对应的该部分。下面看看HashTable的几个构造方法:
3.2 构造方法

//参数为数组容量和加载因子的构造方法
public Hashtable(int initialCapacity, float loadFactor) {
	if (initialCapacity < 0)
		throw new IllegalArgumentException("Illegal Capacity: "+
										   initialCapacity);
	if (loadFactor <= 0 || Float.isNaN(loadFactor))
		throw new IllegalArgumentException("Illegal Load: "+loadFactor);
 
	if (initialCapacity==0)
		initialCapacity = 1;
	this.loadFactor = loadFactor;
	table = new Entry[initialCapacity]; //初始化数组
	//初始化门限 = 容量 * 加载因子
	threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
	initHashSeedAsNeeded(initialCapacity);
}
 
//参数为初始容量的构造方法
public Hashtable(int initialCapacity) {
	this(initialCapacity, 0.75f); //我们可以看出,默认加载因子为0.75
} 
 
//默认构造方法
public Hashtable() { //可以看出,默认容量为11,加载因子为0.75
	this(11, 0.75f);
}
 
//包含“子Map”的构造函数
public Hashtable(Map<? extends K, ? extends V> t) {
	this(Math.max(2*t.size(), 11), 0.75f);//先比较容量,如果Map的2倍容量大于11,则使用新的容量
	putAll(t);
}

我们可以看到,如果我们不指定数组容量和加载因子,HashTable会自动初始化容量为11,加载因子为0.75。加载因子和HashMap是相同的。
3.3 存取方法
和HashMap的分析一样,HashTable的存取部分重点分析put和get方法,其他的方法我放到代码中分析。首先看看HashTable是如何存储数据的:

public synchronized V put(K key, V value) {
	//确保value不为空
	if (value == null) {
		throw new NullPointerException();
	}
 
	Entry tab[] = table;
	int hash = hash(key); //计算哈希值
	int index = (hash & 0x7FFFFFFF) % tab.length; //根据哈希值计算在数组中的索引
	for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
		if ((e.hash == hash) && e.key.equals(key)) { //如果对应的key已经存在
			V old = e.value;
			e.value = value; //替换掉原来的value
			return old;
		}
	}
	//否则新添加一个Entry
	modCount++;
	if (count >= threshold) { //判断数组中的Entry数量是否已经达到阈值
		rehash(); //如果达到了,扩容
 
		tab = table;
		hash = hash(key); //重新计算哈希值
		index = (hash & 0x7FFFFFFF) % tab.length; //重新计算在新的数组中的索引
	}
 
	//创建一个新的Entry
	Entry<K,V> e = tab[index];
	//存到对应的位置,并将其next置为原来该位置的Entry,这样就与原来的连上了
	tab[index] = new Entry<>(hash, key, value, e);
	count++;
	return null;
}

put方法中,首先检测value是否为null,如果为null则会抛出NullPointerException异常。然后往下走,跟HashMap的过程一样,先计算哈希值,再根据哈希值计算在数组中的索引位置,不过这里计算索引位置的方法和HashMap不同,HashMap里使用的是 hash & (length-1)的方法,其实本质上跟这里用的(hash & 0x7FFFFFFF) % table.length一样的效果,但是HashMap中的方法效率要高,至于它们两为啥本质一样的,可以参见我的上一博客:HashMap,那里分析的很详细。HashTable中的很好理解,直接取余就是索引值,地球人都知道~
然后便开始往数组中存数据了,如果当前的key已经在里面了,那么直接替换原来旧的value,如果不存在,先判断数组中的Entry数量有没有达到门限值,达到了就要调用rehash方法进行扩容,然后重新计算当前key在新的数组中的索引值,然后在该位置添加进去即可。下面我们看一下rehash方法:

private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 
protected void rehash() {
	int oldCapacity = table.length;
	Entry<K,V>[] oldMap = table; //保存旧数组
 
	int newCapacity = (oldCapacity << 1) + 1; //新数组容量 = 2 * 旧容量 + 1
	if (newCapacity - MAX_ARRAY_SIZE > 0) {
		if (oldCapacity == MAX_ARRAY_SIZE) 
			return;
		newCapacity = MAX_ARRAY_SIZE; //不能超出最大值
	}
	Entry<K,V>[] newMap = new Entry[newCapacity];
 
	modCount++;
	threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
	boolean rehash = initHashSeedAsNeeded(newCapacity);
 
	table = newMap;
 
	for (int i = oldCapacity ; i-- > 0 ;) {
		for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
			Entry<K,V> e = old;
			old = old.next;
 
			if (rehash) {
				e.hash = hash(e.key);
			}
			int index = (e.hash & 0x7FFFFFFF) % newCapacity;//重新计算在新的数组中的索引
			//第一次newMap[index]为空,后面每次的nex都是当前的Entry,这样才能连上
			e.next = newMap[index];
			newMap[index] = e;//然后将该Entry放到当前位置
		}
	}
}

到这里put方法就分析完了,还有个putAll方法,是将整个Map加到当前HashTable中,内部也是遍历每个Entry,然后调用上面的put方法而已,简单看一下吧:


public synchronized void putAll(Map<? extends K, ? extends V> t) {
	for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
		put(e.getKey(), e.getValue());
}

到这里,是不是感觉HashTable其实很简单,比HashMap简单多了。下面来看看get方法,也很简单,我觉得已经不用再分析了……


public synchronized V get(Object key) {
	Entry tab[] = table;
	int hash = hash(key); //哈希值
	int index = (hash & 0x7FFFFFFF) % tab.length; //索引值
	for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
		if ((e.hash == hash) && e.key.equals(key)) {
			return e.value; //拿到value
		}
	}
	return null;
}

3.4 其他方法
上面分析完了存取方法,剩下来的其他方法我放到代码里分析了,也很简单:

//返回数组中Entry数
public synchronized int size() {
	return count;
}
//判断是否为空
public synchronized boolean isEmpty() {
	return count == 0;
}
 
//返回所有key的枚举对象
public synchronized Enumeration<K> keys() {
	return this.<K>getEnumeration(KEYS);
}
 
//返回所有value的枚举对象
public synchronized Enumeration<V> elements() {
	return this.<V>getEnumeration(VALUES);
}
 
//内部私有方法,返回枚举对象
private <T> Enumeration<T> getEnumeration(int type) {
	if (count == 0) {
		return Collections.emptyEnumeration();
	} else {
		return new Enumerator<>(type, false); //new一个Enumeration对象,见下面:
	}
}
 
// Types of Enumerations/Iterations
private static final int KEYS = 0;
private static final int VALUES = 1;
private static final int ENTRIES = 2;
 
//私有内部类,实现了Enumeration接口和Iterator接口
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
	Entry[] table = Hashtable.this.table;
	int index = table.length;
	Entry<K,V> entry = null;
	Entry<K,V> lastReturned = null;
	int type;
 
	//该字段用来决定是使用iterator还是Enumeration
	boolean iterator; //false表示使用Enumeration
 
	//fail-fast
	protected int expectedModCount = modCount;
 
	Enumerator(int type, boolean iterator) {
		this.type = type;
		this.iterator = iterator;
	}
 
	public boolean hasMoreElements() { //判断是否含有下一个元素
		Entry<K,V> e = entry;
		int i = index;
		Entry[] t = table;
		/* Use locals for faster loop iteration */
		while (e == null && i > 0) {
			e = t[--i];
		}
		entry = e;
		index = i;
		return e != null;
	}
 
	public T nextElement() { //获得下一个元素
		Entry<K,V> et = entry;
		int i = index;
		Entry[] t = table;
		/* Use locals for faster loop iteration */
		while (et == null && i > 0) {
			et = t[--i];
		}
		entry = et;
		index = i;
		if (et != null) {
			Entry<K,V> e = lastReturned = entry;
			entry = e.next;
			//根据传进来的关键字决定返回什么
			return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
		}
		throw new NoSuchElementException("Hashtable Enumerator");
	}
 
	// Iterator methods
	public boolean hasNext() {
		return hasMoreElements();
	}
 
	public T next() {
		if (modCount != expectedModCount)
			throw new ConcurrentModificationException();
		return nextElement();
	}
 
	public void remove() {
		if (!iterator)
			throw new UnsupportedOperationException();
		if (lastReturned == null)
			throw new IllegalStateException("Hashtable Enumerator");
		if (modCount != expectedModCount)
			throw new ConcurrentModificationException();
 
		synchronized(Hashtable.this) { //保证了线程安全
			Entry[] tab = Hashtable.this.table;
			int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
 
			for (Entry<K,V> e = tab[index], prev = null; e != null;
				 prev = e, e = e.next) {
				if (e == lastReturned) {
					modCount++;
					expectedModCount++;
					if (prev == null)
						tab[index] = e.next;
					else
						prev.next = e.next;
					count--;
					lastReturned = null;
					return;
				}
			}
			throw new ConcurrentModificationException();
		}
	}
}
 
//判断HashTable中是否包含value值
public synchronized boolean contains(Object value) {
	if (value == null) { //value不能为空
		throw new NullPointerException();
	}
 
	Entry tab[] = table;
	//从后向前遍历table数组中的元素(Entry)
	for (int i = tab.length ; i-- > 0 ;) {
		for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
			if (e.value.equals(value)) {
				return true;
			}
		}
	}
	return false;
}
 
public boolean containsValue(Object value) {
	return contains(value);
}
 
//判断HashTable中是否包含key
public synchronized boolean containsKey(Object key) {
	Entry tab[] = table;
	int hash = hash(key);
	int index = (hash & 0x7FFFFFFF) % tab.length;
	for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
		if ((e.hash == hash) && e.key.equals(key)) {
			return true;
		}
	}
	return false;
}
 
//删除HashTable中键为key的Entry,并返回value
public synchronized V remove(Object key) {
	Entry tab[] = table;
	int hash = hash(key);
	int index = (hash & 0x7FFFFFFF) % tab.length;
	//找到key对应的Entry,然后在链表中找到要删除的节点,删除之。
	for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
		if ((e.hash == hash) && e.key.equals(key)) {
			modCount++;
			if (prev != null) {
				prev.next = e.next;
			} else {
				tab[index] = e.next;
			}
			count--;
			V oldValue = e.value;
			e.value = null;
			return oldValue;
		}
	}
	return null;
}
 
//清空HashTable
public synchronized void clear() {
	Entry tab[] = table;
	modCount++;
	for (int index = tab.length; --index >= 0; )
		tab[index] = null; //将HashTable中数组值全部设置为null
	count = 0;
}
 
//克隆一个HashTable,并以Object的形式返回
public synchronized Object clone() {
	try {
		Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
		t.table = new Entry[table.length];
		for (int i = table.length ; i-- > 0 ; ) {
			t.table[i] = (table[i] != null)
				? (Entry<K,V>) table[i].clone() : null;
		}
		t.keySet = null;
		t.entrySet = null;
		t.values = null;
		t.modCount = 0;
		return t;
	} catch (CloneNotSupportedException e) {
		// this shouldn't happen, since we are Cloneable
		throw new InternalError();
	}
}
 
//重写toString方法:{, ,}
public synchronized String toString() {
	int max = size() - 1;
	if (max == -1)
		return "{}";
 
	StringBuilder sb = new StringBuilder();
	Iterator<Map.Entry<K,V>> it = entrySet().iterator();
 
	sb.append('{');
	for (int i = 0; ; i++) {
		Map.Entry<K,V> e = it.next();
		K key = e.getKey();
		V value = e.getValue();
		sb.append(key   == this ? "(this Map)" : key.toString());
		sb.append('=');
		sb.append(value == this ? "(this Map)" : value.toString());
 
		if (i == max)
			return sb.append('}').toString();
		sb.append(", ");
	}
}   
 
// Hashtable的“key的集合”。它是一个Set,意味着没有重复元素
private transient volatile Set<K> keySet = null;
// Hashtable的“key-value的集合”。它是一个Set,意味着没有重复元素
private transient volatile Set<Map.Entry<K,V>> entrySet = null;
// Hashtable的“value的集合”。它是一个Collection,意味着可以有重复元素
private transient volatile Collection<V> values = null;
 
//返回一个被synchronizedSet封装后的keySet对象
//synchronizedSet封装的目的是对keySet的所有方法都添加synchronized,实现多线程同步
public Set<K> keySet() {
	if (keySet == null)
		keySet = Collections.synchronizedSet(new KeySet(), this);
	return keySet;
}
 
 
private class KeySet extends AbstractSet<K> {
	public Iterator<K> iterator() {
		return getIterator(KEYS); //返回一个迭代器,装有HashTable的信息
		//从这里也可以看出,获取到了key的Set集合后,要想取数据,只能通过迭代器
	}
	public int size() {
		return count;
	}
	public boolean contains(Object o) {
		return containsKey(o);
	}
	public boolean remove(Object o) {
		return Hashtable.this.remove(o) != null;
	}
	public void clear() {
		Hashtable.this.clear();
	}
}
 
// 获取Hashtable的迭代器
// 若Hashtable的实际大小为0,则返回“空迭代器”对象;
// 否则,返回正常的Enumerator的对象。(由上面代码可知,Enumerator实现了迭代器和枚举两个接口)
private <T> Iterator<T> getIterator(int type) {
	if (count == 0) {
		return Collections.emptyIterator();
	} else {
		return new Enumerator<>(type, true);
	}
}
 
//返回一个被synchronizedSet封装后的entrySet对象
public Set<Map.Entry<K,V>> entrySet() {
	if (entrySet==null)
		entrySet = Collections.synchronizedSet(new EntrySet(), this);
	return entrySet;
}
//跟keySet类似
private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
	public Iterator<Map.Entry<K,V>> iterator() {
		return getIterator(ENTRIES);
	}
 
	public boolean add(Map.Entry<K,V> o) {
		return super.add(o);
	}
	
	// 查找EntrySet中是否包含Object(o)
	// 首先,在table中找到o对应的Entry(Entry是一个单向链表)
	// 然后,查找Entry链表中是否存在Object
	public boolean contains(Object o) {
		if (!(o instanceof Map.Entry))
			return false;
		Map.Entry entry = (Map.Entry)o;
		Object key = entry.getKey();
		Entry[] tab = table;
		int hash = hash(key);
		int index = (hash & 0x7FFFFFFF) % tab.length;
 
		for (Entry e = tab[index]; e != null; e = e.next)
			if (e.hash==hash && e.equals(entry))
				return true;
		return false;
	}
	// 删除元素Object(o)
	// 首先,在table中找到o对应的Entry(Entry是一个单向链表)
	// 然后,删除链表中的元素Object
	public boolean remove(Object o) {
		if (!(o instanceof Map.Entry))
			return false;
		Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
		K key = entry.getKey();
		Entry[] tab = table;
		int hash = hash(key);
		int index = (hash & 0x7FFFFFFF) % tab.length;
 
		for (Entry<K,V> e = tab[index], prev = null; e != null;
			 prev = e, e = e.next) {
			if (e.hash==hash && e.equals(entry)) {
				modCount++;
				if (prev != null)
					prev.next = e.next;
				else
					tab[index] = e.next;
 
				count--;
				e.value = null;
				return true;
			}
		}
		return false;
	}
 
	public int size() {
		return count;
	}
 
	public void clear() {
		Hashtable.this.clear();
	}
}
 
// 返回一个被synchronizedCollection封装后的ValueCollection对象
// synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步
public Collection<V> values() {
	if (values==null)
		values = Collections.synchronizedCollection(new ValueCollection(),
													this);
	return values;
}
 
private class ValueCollection extends AbstractCollection<V> {
	public Iterator<V> iterator() {
		return getIterator(VALUES); //同上
	}
	public int size() {
		return count;
	}
	public boolean contains(Object o) {
		return containsValue(o);
	}
	public void clear() {
		Hashtable.this.clear();
	}
}
 
//重写equals()方法
// 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等
public synchronized boolean equals(Object o) {
	if (o == this)
		return true;
 
	if (!(o instanceof Map))
		return false;
	Map<K,V> t = (Map<K,V>) o;
	if (t.size() != size())
		return false;
 
	try {
		Iterator<Map.Entry<K,V>> i = entrySet().iterator();
		while (i.hasNext()) {
			Map.Entry<K,V> e = i.next();
			K key = e.getKey();
			V value = e.getValue();
			if (value == null) {
				if (!(t.get(key)==null && t.containsKey(key)))
					return false;
			} else {
				if (!value.equals(t.get(key)))
					return false;
			}
		}
	} catch (ClassCastException unused)   {
		return false;
	} catch (NullPointerException unused) {
		return false;
	}
 
	return true;
}
 
//计算哈希值
//若HashTable的实际大小为0或者加载因子<0,则返回0
//否则返回“HashTable中的每个Entry的key和value的异或值的总和”
public synchronized int hashCode() {
 
	int h = 0;
	if (count == 0 || loadFactor < 0)
		return h;  // Returns zero
 
	loadFactor = -loadFactor;  // Mark hashCode computation in progress
	Entry[] tab = table;
	for (Entry<K,V> entry : tab)
		while (entry != null) {
			h += entry.hashCode();
			entry = entry.next;
		}
	loadFactor = -loadFactor;  // Mark hashCode computation complete
 
	return h;
}
 
// java.io.Serializable的写入函数
// 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
		throws IOException {
	Entry<K, V> entryStack = null;
 
	synchronized (this) {
		// Write out the length, threshold, loadfactor
		s.defaultWriteObject();
 
		// Write out length, count of elements
		s.writeInt(table.length);
		s.writeInt(count);
 
		// Stack copies of the entries in the table
		for (int index = 0; index < table.length; index++) {
			Entry<K,V> entry = table[index];
 
			while (entry != null) {
				entryStack =
					new Entry<>(0, entry.key, entry.value, entryStack);
				entry = entry.next;
			}
		}
	}
 
	// Write out the key/value objects from the stacked entries
	while (entryStack != null) {
		s.writeObject(entryStack.key);
		s.writeObject(entryStack.value);
		entryStack = entryStack.next;
	}
}
 
// java.io.Serializable的读取函数:根据写入方式读出
// 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出
private void readObject(java.io.ObjectInputStream s)
	 throws IOException, ClassNotFoundException
{
	// Read in the length, threshold, and loadfactor
	s.defaultReadObject();
 
	// Read the original length of the array and number of elements
	int origlength = s.readInt();
	int elements = s.readInt();
 
	// Compute new size with a bit of room 5% to grow but
	// no larger than the original size.  Make the length
	// odd if it's large enough, this helps distribute the entries.
	// Guard against the length ending up zero, that's not valid.
	int length = (int)(elements * loadFactor) + (elements / 20) + 3;
	if (length > elements && (length & 1) == 0)
		length--;
	if (origlength > 0 && length > origlength)
		length = origlength;
 
	Entry<K,V>[] newTable = new Entry[length];
	threshold = (int) Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
	count = 0;
	initHashSeedAsNeeded(length);
 
	// Read the number of elements and then all the key/value objects
	for (; elements > 0; elements--) {
		K key = (K)s.readObject();
		V value = (V)s.readObject();
		// synch could be eliminated for performance
		reconstitutionPut(newTable, key, value);
	}
	this.table = newTable;
}
 
private void reconstitutionPut(Entry<K,V>[] tab, K key, V value)
	throws StreamCorruptedException
{
	if (value == null) {
		throw new java.io.StreamCorruptedException();
	}
	// Makes sure the key is not already in the hashtable.
	// This should not happen in deserialized version.
	int hash = hash(key);
	int index = (hash & 0x7FFFFFFF) % tab.length;
	for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
		if ((e.hash == hash) && e.key.equals(key)) {
			throw new java.io.StreamCorruptedException();
		}
	}
	// Creates the new entry.
	Entry<K,V> e = tab[index];
	tab[index] = new Entry<>(hash, key, value, e);
	count++;
}

4.HashTable的遍历方式
Hashtable的遍历方式比较简单,一般分两步:

    1. 获得Entry或key或value的集合;

    2. 通过Iterator迭代器或者Enumeration遍历此集合。

4.1 遍历HashTable的Entry (效率高)

// 假设table是HashTable对象
// table中的key是String类型,value是Integer类型
Integer value = null;
Iterator iter = table.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry entry = (Map.Entry)iter.next();
    // 获取key
    key = (String)entry.getKey();
    // 获取value
    value = (Integer)entry.getValue();
}

4.2 遍历HashTable的key

String key = null;
Integer value = null;
Iterator iter = table.keySet().iterator();
while (iter.hasNext()) {
    // 获取key
    key = (String)iter.next();
    // 根据key,获取value
    value = (Integer)table.get(key);
}

4.3 遍历HashTable的value

Integer value = null;
Collection c = table.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
    value = (Integer)iter.next();
}

4.5 通过Enumeration遍历HashTable的key(效率高)

Enumeration enu = table.keys();
while(enu.hasMoreElements()) {
    System.out.println(enu.nextElement());
}

4.6 通过Enumeration遍历HashTable的value (效率高)

Enumeration enu = table.elements();
while(enu.hasMoreElements()) {
    System.out.println(enu.nextElement());
}

猜你喜欢

转载自blog.csdn.net/m0_38101105/article/details/82814055