机器学习:GBDT(梯度提升决策树)

一 简介

GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮分类器的残差基础上进行训练。对弱分类器的要求一般是足够简单,并且是低方差和高偏差的。因为训练的过程是通过降低偏差来不断提高最终分类器的精度。

GBDT主要由三个概念组成:Regression Decistion Tree(即DT),Gradient Boosting(即GB),Shrinkage (算法的一个重要演进分枝,目前大部分源码都按该版本实现)。搞定这三个概念后就能明白GBDT是如何工作的。

二 Regression Decistion Tree

决策树分为两大类,回归树分类树。前者用于预测实数值,如明天的温度、用户的年龄、网页的相关程度;后者用于分类标签值,如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面。这里要强调的是,前者的结果加减是有意义的,如10岁+5岁-3岁=12岁,后者则无意义,如男+男+女=到底是男是女? GBDT的核心在于累加所有树的结果作为最终结果,就像前面对年龄的累加(-3是加负3),而分类树的结果显然是没办法累加的,所以GBDT中的树都是回归树,不是分类树,这点对理解GBDT相当重要(尽管GBDT调整后也可用于分类但不代表GBDT的树是分类树)。那么回归树是如何工作的呢?

回归树的运行流程与分类树基本类似,但有以下两点不同之处:

  • 第一,回归树的每个节点得到的是一个预测值而非分类树式的样本计数,假设在某一棵树的某一节点使用了年龄进行分枝(并假设在该节点上人数>1),那么这个预测值就是属于这个节点的所有人年龄的平均值。
  • 第二,在分枝节点的选取上,回归树并没有选用最大熵值来作为划分标准,而是使用了最小化均方差,即\frac{\sum_{i=1}^{n}{} (x_i-\bar{x} )^2}{n}。这很好理解,被预测出错的次数越多,错的越离谱,均方差就越大,通过最小化均方差也就能够找到最靠谱的分枝依据。

三 Gradient Boosting (梯度迭代

Gradient Boosting是一种Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数是评价模型性能(一般为拟合程度+正则项),认为损失函数越小,性能越好。而让损失函数持续下降,就能使得模型不断改性提升性能,其最好的方法就是使损失函数沿着梯度方向下降(讲道理梯度方向上下降最快)。

Boosting,迭代,即通过迭代多棵树来共同决策。这怎么实现呢?难道是每棵树独立训练一遍,比如A这个人,第一棵树认为是10岁,第二棵树认为是0岁,第三棵树认为是20岁,我们就取平均值10岁做最终结论?--当然不是!且不说这是投票方法并不是GBDT,只要训练集不变,独立训练三次的三棵树必定完全相同,这样做完全没有意义。之前说过,GBDT是把所有树的结论累加起来做最终结论的,所以可以想到每棵树的结论并不是年龄本身,而是年龄的一个累加量。GBDT的核心就在于,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。比如A的真实年龄是18岁,但第一棵树的预测年龄是12岁,差了6岁,即残差为6岁。那么在第二棵树里我们把A的年龄设为6岁去学习,如果第二棵树真的能把A分到6岁的叶子节点,那累加两棵树的结论就是A的真实年龄;如果第二棵树的结论是5岁,则A仍然存在1岁的残差,第三棵树里A的年龄就变成1岁,继续学。这就是Gradient Boosting在GBDT中的意义

四 Shrinkage

Shrinkage的思想认为,每次走一小步逐渐逼近结果的效果,要比每次迈一大步很快逼近结果的方式更容易避免过拟合。即它不完全信任每一个棵残差树,它认为每棵树只学到了真理的一小部分,累加的时候只累加一小部分,通过多学几棵树弥补不足。

Shrinkage仍然以残差作为学习目标,但对于残差学习的结果,只累加一小部分,step一般取值0.001-0.01(非gradient的step),使得各个树的残差是渐变而不是陡变的,即将大步切成了小步。Shrinkage能减少过拟合发生也是经验证明的,目前还没有看到从理论的证明。

GBDT 多分类举例说明

我们下面将拿Iris 数据集中的六个数据作为例子,来展示gbdt 多分类的过程。

样本编号 花萼长度(cm) 花萼宽度(cm) 花瓣长度(cm) 花瓣宽度 花的种类
1 5.1 3.5 1.4 0.2 山鸢尾
2 4.9 3.0 1.4 0.2 山鸢尾
3 7.0 3.2 4.7 1.4 杂色鸢尾
4 6.4 3.2 4.5 1.5 杂色鸢尾
5 6.3 3.3 6.0 2.5 维吉尼亚鸢尾
6 5.8 2.7 5.1 1.9 维吉尼亚鸢尾

   这是一个有6个样本的三分类问题。我们需要根据这个花的花萼长度,花萼宽度,花瓣长度,花瓣宽度来判断这个花属于山鸢尾,杂色鸢尾,还是维吉尼亚鸢尾。具体应用到gbdt多分类算法上面。我们用一个三维向量来标志样本的label。[1,0,0] 表示样本属于山鸢尾,[0,1,0] 表示样本属于杂色鸢尾,[0,0,1] 表示属于维吉尼亚鸢尾。

        gbdt 的多分类是针对每个类都独立训练一个 CART Tree。所以这里,我们将针对山鸢尾类别训练一个 CART Tree 1。杂色鸢尾训练一个 CART Tree 2 。维吉尼亚鸢尾训练一个CART Tree 3,这三个树相互独立。

        我们以样本 1 为例。针对 CART Tree1 的训练样本是[5.1,3.5,1.4,0.2][5.1,3.5,1.4,0.2],label 是 1,最终输入到模型当中的为[5.1,3.5,1.4,0.2,1][5.1,3.5,1.4,0.2,1]。针对 CART Tree2 的训练样本也是[5.1,3.5,1.4,0.2][5.1,3.5,1.4,0.2],但是label 为 0,最终输入模型的为[5.1,3.5,1.4,0.2,0][5.1,3.5,1.4,0.2,0]. 针对 CART Tree 3的训练样本也是[5.1,3.5,1.4,0.2][5.1,3.5,1.4,0.2],label 也为0,最终输入模型当中的为[5.1,3.5,1.4,0.2,0][5.1,3.5,1.4,0.2,0]. 

        下面我们来看 CART Tree1 是如何生成的,其他树 CART Tree2 , CART Tree 3的生成方式是一样的。CART Tree的生成过程是从这四个特征中找一个特征做为CART Tree1 的节点。比如花萼长度做为节点。6个样本当中花萼长度 大于5.1 cm的就是 A类,小于等于 5.1 cm 的是B类。生成的过程其实非常简单,问题 1.是哪个特征最合适? 2.是这个特征的什么特征值作为切分点? 即使我们已经确定了花萼长度做为节点。花萼长度本身也有很多值。在这里我们的方式是遍历所有的可能性,找到一个最好的特征和它对应的最优特征值可以让当前式子的值最小。

 

    我们以第一个特征的第一个特征值为例。R1 为所有样本中花萼长度小于 5.1 cm 的样本集合,R2 为所有样本当中花萼长度大于等于 5.1cm 的样本集合。所以 R1={2}R1={2},R2={1,3,4,5,6}R2={1,3,4,5,6}.

 

   y1 为 R1 所有样本的label 的均值 1/1=11/1=1。y2 为 R2 所有样本的label 的均值 (1+0+0+0+0)/5=0.2(1+0+0+0+0)/5=0.2。

        下面便开始针对所有的样本计算这个式子的值。样本1 属于 R2 计算的值为(1−0.2)2(1−0.2)2, 样本2 属于R1 计算的值为(1−1)2(1−1)2, 样本 3,4,5,6同理都是 属于 R2的 所以值是(0−0.2)2(0−0.2)2. 把这六个值加起来,便是 山鸢尾类型在特征1 的第一个特征值的损失值。这里算出来(1-0.2)^2+ (1-1)^2 + (0-0.2)^2+(0-0.2)^2+(0-0.2)^2 +(0-0.2)^2= 0.84

        接着我们计算第一个特征的第二个特征值,计算方式同上,R1 为所有样本中 花萼长度小于 4.9 cm 的样本集合,R2 为所有样本当中 花萼长度大于等于 4.9 cm 的样本集合.所以 R1={}R1={},R1={1,2,3,4,5,6}R1={1,2,3,4,5,6}. y1 为 R1 所有样本的label 的均值 = 0。y2 为 R2 所有样本的label 的均值 (1+1+0+0+0+0)/6=0.3333(1+1+0+0+0+0)/6=0.3333。

    我们需要针对所有的样本,样本1 属于 R2, 计算的值为(1−0.333)2(1−0.333)2, 样本2 属于R2 ,计算的值为(1−0.333)2(1−0.333)2, 样本 3,4,5,6同理都是 属于 R2的, 所以值是(0−0.333)2(0−0.333)2. 把这六个值加起来山鸢尾类型在特征1 的第二个特征值的损失值。这里算出来 (1-0.333)^2+ (1-0.333)^2 + (0-0.333)^2+(0-0.333)^2+(0-0.333)^2 +(0-0.333)^2 = 2.244189. 这里的损失值大于 特征一的第一个特征值的损失值,所以我们不取这个特征的特征值。

      这样我们可以遍历所有特征的所有特征值,找到让这个式子最小的特征以及其对应的特征值,一共有24种情况,4个特征*每个特征有6个特征值。在这里我们算出来让这个式子最小的特征花萼长度,特征值为5.1 cm。这个时候损失函数最小为 0.8。

        于是我们的预测函数此时也可以得到:

   此处 R1 = {2},R2 = {1,3,4,5,6},y1 = 1,y2 = 0.2。训练完以后的最终式子为

借由这个式子,我们得到对样本属于类别1 的预测值 f1(x)=1+0.2∗5=2f1(x)=1+0.2∗5=2。同理我们可以得到对样本属于类别2,3的预测值f2(x)f2(x),f3(x)f3(x).样本属于类别1的概率 即为

 

优点:

  • 预测精度高
  • 适合低维数据
  • 能处理非线性数据

缺点:

  • 并行麻烦(因为上下两棵树有联系)
  • 如果数据维度较高时会加大算法的计算复杂度

参考文献

https://blog.csdn.net/molu_chase/article/details/78111148

https://blog.csdn.net/aliceyangxi1987/article/details/72983458#0-tsina-1-19763-397232819ff9a47a7b7e80a40613cfe1

https://blog.csdn.net/shine19930820/article/details/65633436

https://www.cnblogs.com/ModifyRong/p/7744987.html

https://blog.csdn.net/legendavid/article/details/78904353 

猜你喜欢

转载自blog.csdn.net/abc_138/article/details/82751977