图像编码解码(I P B帧),数码相机成像原理

 图像编码解码研究?图片的I、P、B帧? 图片生成的原理?
> 图片格式
移动端图片_编码解码调研- https://blog.csdn.net/jiang314/article/details/51979747
  常见的图片格式有bmp, jpg(jpeg), png, gif, webp等。创造其他更加优秀的图片格式,比如 JPEG 小组的 JPEG 2000、微软的 JPEG-XR、Google 的 WebP、个人开发者发布的 BPG、FLIF 等。
android的源码后可以发现底层也是调用的libjpeg库来实现。
jpeg比较适合存储色彩“杂乱”的拍摄图片,png比较适合存储方几何特征比较强的矢量图。
libpng库,并且libpng库依赖zlib库(由此可以看出png算法有用到常规的压缩算法)。libgif库。
  JPEG 是目前最常见的图片格式,它诞生于 1992 年,是一个很古老的格式。它只支持有损压缩,其压缩算法可以精确控制压缩比,以图像质量换得存储空间。由于它太过常见,以至于许多移动设备的 CPU 都支持针对它的硬编码与硬解码。
  PNG 诞生在 1995 年,比 JPEG 晚几年。它本身的设计目的是替代 GIF 格式,所以它与 GIF 有更多相似的地方。PNG 只支持无损压缩,所以它的压缩比是有上限的。相对于 JPEG 和 GIF 来说,它最大的优势在于支持完整的透明通道。
  GIF 诞生于 1987 年,随着初代互联网流行开来。它有很多缺点,比如通常情况下只支持 256 种颜色、透明通道只有 1 bit、文件压缩比不高。它唯一的优势就是支持多帧动画,凭借这个特性,它得以从 Windows 1.0 时代流行至今,而且仍然大受欢迎。

> 图像编码和解码
图像压缩编码和解码原理- https://blog.csdn.net/wishfly/article/details/52066859
图像压缩编码和解码原理- https://blog.csdn.net/u013898698/article/details/54943939
基于python的二元霍夫曼编码解码- https://github.com/yhhzsd/Huffman-encoding-and-decoding

 图像编码和解码具体算法核心是离散余弦变换、Huffman编码、算术编码等技术等。
 在计算机中, 图像是由一个个像素点组成,像素点就是颜色点,而颜色最简单的方式就是用RGB或RGBA表示。图像是二维数据,数据在内存中只能一维存储,二维转一维有不同的对应方式。比较常见的只有两种方式: 按像素“行排列”从上往下或者从下往上。像素是构成图像的最小单位。
  图像分割越细,像素数越多,取样点越多,图像清晰度越高;反之,像素数越少,图像清晰度越低。实际上,对图像压缩处理,就是对图像区块的数据、像素的数据进行压缩处理。
  静止图像的数据压缩技术,即帧内数据压缩技术;活动图像的数据压缩技术,即帧间数据压缩技术。
  离散余弦变换简称为DCT(是英Discrete Cosine Transform的缩写词),是一种数字处理方法,经常用于数据处理。DCT是多种数字变换方法的一种,它是把空间域图像变换到频率域进行分析的方法。由于DCT的变换核构成的基向量与图像内容无关,而且变换核是可以分离的,既二维DCT可以用两次一维DCT来完成,使得数学运算难度大大简化,再配以已经发现的其它快速算法,使得DCT编码得到了广泛的应用。将DCT应用于图像数据压缩,可以减少代表图像亮度(或色度)层次数码信息,达到数据压缩的目的。利用DCT不仅可将图像编码,还可以在编码变换过程发现图像细节的位置,以便删去或略去对视觉不敏感的部分,而更加突出视觉的敏感部分,通过选择主要数据来传输、重视图像。

-- 离散余弦变换(DCT)编码
  利用DCT压缩图像数据,主要是根据图像信号在频率域的统计特性。在空间域看来,图像内容千差万别;但在频率域上,经过对大量图像的统计分析发现,图像经过DCT变换后,其频率系数的主要成分集中于比较小的范围,且主要位于低频部分。利用DCT变换揭示出这种规律后,可以再采取一些措施把频谱中能量较小的部分舍弃,尽量保留传输频谱中主要的频率分量,就能够达到图像数据压缩目的。

  图像是由亮度、色度信息来描述的,在各相邻帧图像内,若分别比较同一相对位置的亮度、色度信号,通常其差别较小。经大量统计发现,在各个像素当中仅有10%以下的像素点的亮度差值变化超过去时2%,而色度差值变化在0.1%以下。在各帧图像中具有大量重复内容,这些重复内容的数据属于多余(冗余)信息,于是,可以通过减少时域冗余信息的方法,即运作帧间数据压缩技术,来减少图像传输的数码率。

-- I画面(内码帧,或称帧内编码帧);P画面(预测帧,或称前向预测编码帧);B画面(双向预测帧,或称双向预测内插编码帧);原理:
  按照MPEG-1标准,传送的活动画面可分为3种类型。第1种,是场景更换后的第1帧画面,它是一种独立的画面,这种画面采用较高清晰度的逐点取样法进行传送,此画面称为I画面(内码帧,或称帧内编码帧)。该画面信息是由自身画面决定,不必参考其它画面。该画面的数据代表了活动图像的主体内容和背景内容,它是电视画面的基础。第2种,是与I画面相隔一定时间、活动图像主体位置在同一背景上已发生明显变化的画面,此画面称P画面(预测帧,或称前向预测编码帧)。该画面用前面的I画面作为参考画面,该画面不传送背景等重复性信息,仅传送主体变化的差值,这就省略了一部分细节信息,而在重放时依靠帧存储器将I画面的主要部分和P画面的差值进行运算,即可得出新画面的完整内容,它是既有背景又有现时运动主体状态的实际画面。第3种,其情况与P画面相似,用来传送在I、P画面之间的画面,称B画面(双向预测帧,或称双向预测内插编码帧)。该画面仅反映在I、P画面之间的运动主体变化情况,并用位移矢量(或称运动矢量等)表示画面主体移动情况。其信息量更小些。因为在重放它时,既可参考I画面内容,也要参考P画面内容,所以称为双向预测帧。
  通常,更换场景后的第一帧就是I帧,I帧应当全帧传送。从压缩的程度来看,I画面的压缩量最少;P画面次之,它是以I画面为基础;B画面压缩最多。为了加大压缩比,通常在I帧后面相隔2帧(最多3帧)设置1个P帧,在I、P帧之间都是B帧,在两个P帧之间也是设置2~3帧B帧。B帧传送它与I帧或P帧之间的差值信息,或者P帧与后面P帧或I帧之间的差值信息,或者它与前后I、P帧或P、P帧平均值之间的差值信息。当主体内容变化愈大时,两个I画面之间的帧数值越小;当主体内容变化小时,I面画的间隔可以适当大一些。或者说,B帧、P帧所占比例越大,图像压缩比越高。一般两个I画面相隔13~15帧,相隔帧数不宜再多。
 VCD采用的帧间压缩技术标准,对图像编码顺序和各帧间隔是有具体规定的。采用帧压缩技术后,各帧之间的信息冗余量大大减少,图像码率进一步压缩,压缩比可达3-20余倍。

> 数码相机成像原理

 图片的形成原理? 照相机原理? 数码相机工作原理? 照相机的成像原理?
彩色胶片照相机的成像原理- https://zhidao.baidu.com/question/2261719184663482148.html
【图像处理】相机成像原理- https://blog.csdn.net/jaych/article/details/50683068
【图像处理】数码相机工作原理完整解析- https://blog.csdn.net/HelloZEX/article/details/80901766
 CD、DVD、高清电视、MP3和DVR其实都是基于相同的原理,即:将传统的模拟信息转变为数字信息。传统胶片照相机的拍摄过程完全是光信号与化学信号的转换过程。
 数码图像技术。
 数码相机自动对焦镜头从工作原理上说大多都采用了间接实测物距方式进行对焦。经常被利用来进行间接距离测量的方式有:无源光学基线测距、有源超声波测距、有源主动红外测距以及现代的激光技术在测量领域的应用等。
 目前数码相机的核心成像部件有两种:一种是CCD,一种是CMOS。
  数码相机中处理器主要分两类,中央处理器和图像处理器。前者是数码相机的大脑,数码相机的一切动作,例如开机自检、错误处理等,都由中央控制器发出。中央控制器是一块可编程的DSP(Digital Signal Processing 数字信号处理),在外围或其内部,有一个小容量的FLASH,负责存放一些程序语句。中央控制器按照这些程序语句对相机的各种操作做出反应,例如对环境的光线强度做出判断、调节感光二极管放大器的放大率、用不用闪光灯、采用何种快门速度和光圈等。另外的图像处理器中除了要把每一个像素点的颜色计算出来外,还要把它们按照一定的时钟周期进行排列,组成完整的图像。在某些场合还要对图像进行一定格式的压缩,使图像的容量更小。图象处理器实质上也是一块可编程的DSP处理器。事实上,图像处理器算法的好坏对处理出来的图像质量影响很大。
  数码相机的成像原理可以简单的概括为电荷耦合器件(CCD)接收光学镜头传递来的影像,经 模/数转换器(A/D)转换成数字信号后贮于存贮器中。

数码相机的成像原理- https://www.cnblogs.com/linkr/articles/2310234.html
【图像处理】工业相机原理详述- https://blog.csdn.net/HelloZEX/article/details/80905095
  工业相机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机的选择不仅直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。
  一般情况下,工业相机按照芯片类型可以分为CCD相机和CMOS相机.
-- 相机常见参数介绍:
 1. 分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于工业数字相机一般是直接与光电传感器的像元数对应的,对于工业数字模拟相机则是取决于视频制式,PAL制为768*576,NTSC制为640*480。
 2. 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于工业数字数字相机一般还会有10Bit、12Bit等。
 3. 最大帧率(Frame Rate)/行频(Line Rate):相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机机为每秒采集的行数(Hz)。
 4. 曝光方式(Exposure)和快门速度(Shutter):对于工业线阵相机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以与行周期一致,也可以设定一个固定的时间;面阵相机有帧曝光、场曝光和滚动行曝光等几种常见方式,工业数字相机一般都提供外触发采图的功能。快门速度一般可到10微秒,高速相机还可以更快。
 5. 像元尺寸(Pixel Size):像元大小和像元数(分辨率)共同决定了相机靶面的大小。目前工业数字相机像元尺寸一般为3μm-10μm,一般像元尺寸越小,制造难度越大,图像质量也越不容易提高。
 6. 光谱响应特性(Spectral Range):是指该像元传感器对不同光波的敏感特性,一般响应范围是350nm-1000nm,一些相机在靶面前加了一个滤镜,滤除红外光线,如果系统需要对红外感光时可去掉该滤镜。

JPG、PNG和GIF图片的基本原理及优化方法- https://blog.csdn.net/github_38885296/article/details/78978692
 

猜你喜欢

转载自blog.csdn.net/ShareUs/article/details/82534020