线程池和线程的原理,基本使用

一.Java中的ThreadPoolExecutor类

  java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。下面我们来看一下ThreadPoolExecutor类的具体实现源码。

  在ThreadPoolExecutor类中提供了四个构造方法:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public class ThreadPoolExecutor extends AbstractExecutorService {

    .....

    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,

            BlockingQueue<Runnable> workQueue);

    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,

            BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory);

    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,

            BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler);

    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,

        BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);

    ...

}

   从上面的代码可以得知,ThreadPoolExecutor继承了AbstractExecutorService类,并提供了四个构造器,事实上,通过观察每个构造器的源码具体实现,发现前面三个构造器都是调用的第四个构造器进行的初始化工作。

   下面解释下一下构造器中各个参数的含义:

  • corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
  • maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;
  • keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;

AbstractExecutorService是一个抽象类,它实现了ExecutorService接口。

public abstract class AbstractExecutorService implements ExecutorService {

    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { };

    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { };

    public Future<?> submit(Runnable task) {};

    public <T> Future<T> submit(Runnable task, T result) { };

    public <T> Future<T> submit(Callable<T> task) { };

    private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks,

                            boolean timed, long nanos)

        throws InterruptedException, ExecutionException, TimeoutException {

    };

    public <T> T invokeAny(Collection<? extends Callable<T>> tasks)

        throws InterruptedException, ExecutionException {

    };

    public <T> T invokeAny(Collection<? extends Callable<T>> tasks,

                           long timeout, TimeUnit unit)

        throws InterruptedException, ExecutionException, TimeoutException {

    };

    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)

        throws InterruptedException {

    };

    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,

                                         long timeout, TimeUnit unit)

        throws InterruptedException {

    };     }

 而ExecutorService又是继承了Executor接口

public interface ExecutorService extends Executor {

    void shutdown();

    boolean isShutdown();

    boolean isTerminated();

    boolean awaitTermination(long timeout, TimeUnit unit)

        throws InterruptedException;

    <T> Future<T> submit(Callable<T> task);

    <T> Future<T> submit(Runnable task, T result);

    Future<?> submit(Runnable task);

    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)

        throws InterruptedException;

    <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,

                                  long timeout, TimeUnit unit)

        throws InterruptedException;

    <T> T invokeAny(Collection<? extends Callable<T>> tasks)

        throws InterruptedException, ExecutionException;

    <T> T invokeAny(Collection<? extends Callable<T>> tasks,

                    long timeout, TimeUnit unit)

        throws InterruptedException, ExecutionException, TimeoutException;

}

我们看一下Executor接口的实现:

public interface Executor {

    void execute(Runnable command);

}

到这里,大家应该明白了ThreadPoolExecutor、AbstractExecutorService、ExecutorService和Executor几个之间的关系了。

  Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的;

  然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等;

  抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法;

  然后ThreadPoolExecutor继承了类AbstractExecutorService。

  在ThreadPoolExecutor类中有几个非常重要的方法:

execute()  

submit()

shutdown()

shutdownNow()

execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。

submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果。

shutdown()和shutdownNow()是用来关闭线程池的。

还有其他比如:getQueue() 、getPoolSize() 、getActiveCount()、getCompletedTaskCount()等获取与线程池相关属性的方法,

二、线程池执行流程

要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在Executors类里面提供了一些静态工厂,生成一些常用的线程池。

1. newSingleThreadExecutor

创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

2.newFixedThreadPool

创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

3. newCachedThreadPool

创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,

那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。

4.newScheduledThreadPool

创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

线程状态转换

1、新建状态(New):新创建了一个线程对象。

2、就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start()方法。该状态的线程位于可运行线程池中,变得可运行,等待获取CPU的使用权。

3、运行状态(Running):就绪状态的线程获取了CPU,执行程序代码。

4、阻塞状态(Blocked):阻塞状态是线程因为某种原因放弃CPU使用权,暂时停止运行。直到线程进入就绪状态,才有机会转到运行状态。阻塞的情况分三种:

(一)、等待阻塞:运行的线程执行wait()方法,JVM会把该线程放入等待池中。(wait会释放持有的锁)

(二)、同步阻塞:运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入锁池中。

(三)、其他阻塞:运行的线程执行sleep()或join()方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。(注意,sleep是不会释放持有的锁)

5、死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。

线程类的一些常用方法: 

        sleep(): 强迫一个线程睡眠N毫秒。 
  isAlive(): 判断一个线程是否存活。 
  join(): 等待线程终止。 
  activeCount(): 程序中活跃的线程数。 
  enumerate(): 枚举程序中的线程。 
    currentThread(): 得到当前线程。 
  isDaemon(): 一个线程是否为守护线程。 
  setDaemon(): 设置一个线程为守护线程。(用户线程和守护线程的区别在于,是否等待主线程依赖于主线程结束而结束) 
  setName(): 为线程设置一个名称。 
  wait(): 强迫一个线程等待。 
  notify(): 通知一个线程继续运行。 
  setPriority(): 设置一个线程的优先级。

猜你喜欢

转载自blog.csdn.net/mawenshu316143866/article/details/81287902