java--单例模式

 单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个实例。

在计算机系统中,线程池、缓存、日志对象、对话框、打印机、显卡驱动程序对象常被设计成单例。

单例模式特点有:

  • 单例类只能有一个实例
  • 单例类必须自己创建自己唯一的实例
  • 单例类必须给所有其他对象提供这一实例

规则:

   1.构造方法私有

   2.私有   静态的本类对象(用于判断是否已经存在对象)

   3.公有   静态的返回本类对象的方法

优点:

   它能够避免实例对象的重复创建,不仅可以减少每次创建对象的时间开销,还可以节约内存空间;

   能够避免由于操作多个实例导致的逻辑错误。如果一个对象有可能贯穿整个应用程序,而且起到了全局统一管理控制的作用,那么单例模式也许是一个值得考虑的选择。

单例模式的实现方法:

1.饿汉模式:不管对象是否需要使用,先创建等待使用。

public class Singleton{

 private static Singleton instance=new Singleton();

 private Singleton(){}

 public static Singleton getInstance(){

   return instance;

}

}

  饿汉模式在类加载的时候就对实例进行创建,实例在整个程序周期都存在。它的好处是只在类加载的时候创建一次实例,不会存在多个线程创建多个实例的情况,避免了多线程同步的问题。它的缺点也很明显,即使这个单例没有用到也会被创建,而且在类加载之后就被创建,内存就被浪费了。这种实现方式适合单例占用内存比较小,在初始化时就会被用到的情况。

2.懒汉模式:只有当使用该类的对象时,才考虑是否创建,若存在就不创建。

public class Singleton{

 private static Singleton instance;

 private Singleton(){}

 public static Singleton getInstance(){

   if(instance = = nul){

   instance = new Singleton();  

   }

   return instance;

}

}

  如果某个单例使用的次数少,并且创建单例消耗的资源较多,那么就需要实现单例的按需创建,这个时候使用懒汉模式就是一个不错的选择。但是这里的懒汉模式并没有考虑线程安全问题,在多个线程可能会并发调用它的getInstance()方法,导致创建多个实例,因此需要加锁解决线程同步问题,实现如下。

  1. public class Singleton{  
  2.     private static Singleton instance = null;  
  3.     private Singleton(){}  
  4.     public static synchronized Singleton newInstance(){  
  5.         if(null == instance){  
  6.             instance = new Singleton();  
  7.         }  
  8.         return instance;  
  9.     }  
  10. }  
3. 静态内部类

  1. public class Singleton{  
  2.     private static class SingletonHolder{  
  3.         public static Singleton instance = new Singleton();  
  4.     }  
  5.     private Singleton(){}  
  6.     public static Singleton getInstance(){  
  7.         return SingletonHolder.instance;  
  8.     }  
  9. }  

  这种方式同样利用了类加载机制来保证只创建一个instance实例。它与饿汉模式一样,也是利用了类加载机制,因此不存在多线程并发的问题。不一样的是,它是在内部类里面去创建对象实例。这样的话,只要应用中不使用内部类,JVM就不会去加载这个单例类,也就不会创建单例对象,从而实现懒汉式的延迟加载。也就是说这种方式可以同时保证延迟加载和线程安全。

4.双重校验锁

       加锁的懒汉模式看起来即解决了线程并发问题,又实现了延迟加载,然而它存在着性能问题,依然不够完美。synchronized修饰的同步方法比一般方法要慢很多,如果多次调用getInstance(),累积的性能损耗就比较大了。因此就有了双重校验锁

  1. public class Singleton {  
  2.     private static Singleton instance = null;  
  3.     private Singleton(){}  
  4.     public static Singleton getInstance() {  
  5.         if (instance == null) {  
  6.             synchronized (Singleton.class) {  
  7.                 if (instance == null) {//2  
  8.                     instance = new Singleton();  
  9.                 }  
  10.             }  
  11.         }  
  12.         return instance;  
  13.     }  
  14. }  

    可以看到上面在同步代码块外多了一层instance为空的判断。由于单例对象只需要创建一次,如果后面再次调用getInstance()只需要直接返回单例对象。因此,大部分情况下,调用getInstance()都不会执行到同步代码块,从而提高了程序性能。

5.枚举

  1. public enum Singleton{  
  2.     instance;  
  3.     public void whateverMethod(){}      
  4. }  

 上面提到的四种实现单例的方式都有共同的缺点:

1)需要额外的工作来实现序列化,否则每次反序列化一个序列化的对象时都会创建一个新的实例。

2)可以使用反射强行调用私有构造器(如果要避免这种情况,可以修改构造器,让它在创建第二个实例的时候抛异常)。

       而枚举类很好的解决了这两个问题,使用枚举除了线程安全和防止反射调用构造器之外,还提供了自动序列化机制,防止反序列化的时候创建新的对象





猜你喜欢

转载自blog.csdn.net/qq_41457412/article/details/80599294