Redis实现——String类型(sds)

前言

Redis底层是使用C语言实现的,对于字符串类型,其做出了改进,是一种基于动态字符串sds实现,redis作为数据库,查询必然多,修改也会有一定多,sds解决了C语言字符串动态扩展的不方便,以及查询长度操作从O(n)变为了O(1)。
sds相比C语言原始字符串最大优势在于空间预分配惰性空间释放,性能得到很大提高

定义

设计redis实现sds相关的redis源码文件有:sds.c 、 sds.h

sds定义:

struct sdshdr {

    // 记录 buf 数组中已使用字节的数量
    // 等于 SDS 所保存字符串的长度
    int len;

    // 记录 buf 数组中未使用字节的数量
    int free;

    // 字节数组,用于保存字符串
    char buf[];

};

SDS 遵循 C 字符串以空字符结尾的惯例, 保存空字符的 1 字节空间不计算在 SDS 的 len 属性里面, 并且为空字符分配额外的 1 字节空间, 以及添加空字符到字符串末尾等操作都是由 SDS 函数自动完成的, 所以这个空字符对于 SDS 的使用者来说是完全透明的。

遵循空字符结尾这一惯例的好处是, SDS 可以直接重用一部分 C 字符串函数库里面的函数。

其free属性是代表buf数组没有被利用的空间数,便于sds的空间分配策略

这样的设计也打破了C语言字符串会自动认为’\0’为分隔符号,但是sds不会,所以可以保存的字符串中间存在空字符
这里写图片描述

SDS与C语言字符区别

减少修改字符串时带来的内存重分配次数

因为 C 字符串的长度和底层数组的长度之间存在着这种关联性, 所以每次增长或者缩短一个 C 字符串, 程序都总要对保存这个 C 字符串的数组进行一次内存重分配操作:
  • 如果程序执行的是增长字符串的操作, 比如拼接操作(append), 那么在执行这个操作之前, 程序需要先通过内存重分配来扩展底层数组的空间大小 —— 如果忘了这一步就会产生缓冲区溢出。
  • 如果程序执行的是缩短字符串的操作, 比如截断操作(trim), 那么在执行这个操作之后, 程序需要通过内存重分配来释放字符串不再使用的那部分空间 —— 如果忘了这一步就会产生内存泄漏。
因为内存重分配涉及复杂的算法, 并且可能需要执行系统调用, 所以它通常是一个比较耗时的操作:
  • 在一般程序中, 如果修改字符串长度的情况不太常出现, 那么每次修改都执行一次内存重分配是可以接受的。
  • 但是 Redis 作为数据库, 经常被用于速度要求严苛、数据被频繁修改的场合, 如果每次修改字符串的长度都需要执行一次内存重分配的话, 那么光是执行内存重分配的时间就会占去修改字符串所用时间的一大部分, 如果这种修改频繁地发生的话, 可能还会对性能造成影响。

  为了避免 C 字符串的这种缺陷, SDS 通过未使用空间解除了字符串长度和底层数组长度之间的关联: 在 SDS 中, buf 数组的长度不一定就是字符数量加一, 数组里面可以包含未使用的字节, 而这些字节的数量就由 SDS 的 free 属性记录。
  通过未使用空间, SDS 实现了空间预分配惰性空间释放两种优化策略。

空间预分配

空间预分配用于优化 SDS 的字符串增长操作: 当 SDS 的 API 对一个 SDS 进行修改, 并且需要对 SDS 进行空间扩展的时候, 程序不仅会为 SDS 分配修改所必须要的空间, 还会为 SDS 分配额外的未使用空间。

其中, 额外分配的未使用空间数量由以下公式决定:

  • 如果对 SDS 进行修改之后, SDS 的长度(也即是 len 属性的值)将小于 1 MB , 那么程序分配和 len 属性同样大小的未使用空间, 这时 SDS len 属性的值将和 free 属性的值相同。 举个例子, 如果进行修改之后, SDS 的 len 将变成 13 字节, 那么程序也会分配 13 字节的未使用空间, SDS 的 buf 数组的实际长度将变成 13 + 13 + 1 = 27 字节(额外的一字节用于保存空字符)。
  • 如果对 SDS 进行修改之后, SDS 的长度将大于等于 1 MB , 那么程序会分配 1 MB 的未使用空间。 举个例子, 如果进行修改之后, SDS 的 len 将变成 30 MB , 那么程序会分配 1 MB 的未使用空间, SDS 的 buf 数组的实际长度将为 30 MB + 1 MB + 1 byte 。

通过空间预分配策略, Redis 可以减少连续执行字符串增长操作所需的内存重分配次数。

C语言做出N次的扩展,则要向操作系统申请N次重新空间分配。

Redis的SDS做出N次的扩展则最多向操作系统扩展N次。

惰性空间释放

惰性空间释放用于优化 SDS 的字符串缩短操作: 当 SDS 的 API 需要缩短 SDS 保存的字符串时, 程序并不立即使用内存重分配来回收缩短后多出来的字节, 而是使用 free 属性将这些字节的数量记录起来, 并等待将来使用。

举个例子, sdstrim 函数接受一个 SDS 和一个 C 字符串作为参数, 从 SDS 左右两端分别移除所有在 C 字符串中出现过的字符。

sdstrim(s, "XY");   // 移除 SDS 字符串中的所有 'X''Y'

执行sdstrim前
这里写图片描述
执行sdstrim后
这里写图片描述

注意执行 sdstrim 之后的 SDS 并没有释放多出来的 8 字节空间, 而是将这 8 字节空间作为未使用空间保留在了 SDS 里面, 如果将来要对 SDS 进行增长操作的话, 这些未使用空间就可能会派上用场。

通过惰性空间释放策略, SDS 避免了缩短字符串时所需的内存重分配操作, 并为将来可能有的增长操作提供了优化。

与此同时, SDS 也提供了相应的 API , 让我们可以在有需要时, 真正地释放 SDS 里面的未使用空间, 所以不用担心惰性空间释放策略会造成内存浪费。

兼容部分 C 字符串函数

虽然 SDS 的 API 都是二进制安全的, 但它们一样遵循 C 字符串以空字符结尾的惯例: 这些 API 总会将 SDS 保存的数据的末尾设置为空字符, 并且总会在为 buf 数组分配空间时多分配一个字节来容纳这个空字符, 这是为了让那些保存文本数据的 SDS 可以重用一部分 <string.h> 库定义的函数。

总结

SDS的设计,是在C语言的基础上根据自己的需求(需要动态字符串)进行了改进,并且在性能上做出了一些提高。

猜你喜欢

转载自blog.csdn.net/weijifeng_/article/details/80615896