Android so库文件的区节section修复代码分析

本文博客地址:http://blog.csdn.net/qq1084283172/article/details/78818917


一、Android so库文件的节表secion修复方案整理

            1. 简单粗暴的so加解密实现 

             https://bbs.pediy.com/thread-191649.htm
            2. ELF section修复的一些思考 

             https://bbs.pediy.com/thread-192874.htm
            3. 从零打造简单的SODUMP工具  

             https://bbs.pediy.com/thread-194053.htm
            4. 基于init_array加密的SO的脱壳  

             http://ele7enxxh.com/Unpack-Android-Shared-Library-Based-On-Init_Array-Encryption.html
            5. ELF文件格式学习,section修复 

              http://blog.csdn.net/yi_nuo_wang/article/details/72626846
            6. Android逆向中So模块自动化修复工具+实战一发 

              https://bbs.pediy.com/thread-221741.htm
            7. Android加固中So文件自动化修复工具GUI 

              https://bbs.pediy.com/thread-221878.htm
            8. SoFixer

              https://github.com/F8LEFT/SoFixer


二、Android so库文件的节表secion修复的方案讨论

Android so库文件的节表secion修复的方法,最早是由 ThomasKing 在《ELF section修复的一些思考》一文中提到的,尽管方法还不是很完美但是使用 IDA  Pro 对修复后Android so库文件进行静态逆向分析,效果还是不错的。需要提到的是:Android系统 7.0 以后,Android系统在进行Android so库文件的加载时,会对加载的Android so库文件 ELF 格式的seciton节表进行检查和判断,因此以后为了兼顾Android 7.0的系统,Android加固会保留被保护Android so库文件的section节表,但是并不代表Android加固会减弱对Android so库文件的保护。

被Android 加固保护的Android so库文件尽管已经失去了 ELF 文件格式的section节表头段信息,但是通过 ThomasKing 提到的ELF section修复的方法,还是可以修复绝大部分的对静态逆向分析有用的seciton节表头段。ELF 文件格式有两种视图:链接视图和执行视图,ELF文件在编译链接的时候需要链接格式的视图,在ELF文件执行的时候需要执行视图不需要链接视图。



Android so库文件加载到内存并解析链接主要依赖于ELF文件格式的可执行视图,在ELF文件可执行视图的情况下,有一个重要结构的 程序段描述头  .dynamic段,.dynamic段里保存了动态连接器所需要的基本信息如下图所示:



很显然,根据ELF文件可执行视图时的.dynamic段描述的一些信息,能够获取到ELF文件链接视图时的一些重要区节表头的偏移和大小信息,可以完成对这些section区节的重建,.dynamic段 在Android so库文件的动态链接时的实现代码如下所示(以Android 4.4.4 r1的源码为例):

static bool soinfo_link_image(soinfo* si) {
    /* "base" might wrap around UINT32_MAX. */
    Elf32_Addr base = si->load_bias;
    const Elf32_Phdr *phdr = si->phdr;
    int phnum = si->phnum;
    bool relocating_linker = (si->flags & FLAG_LINKER) != 0;

    /* We can't debug anything until the linker is relocated */
    if (!relocating_linker) {
        INFO("[ linking %s ]", si->name);
        DEBUG("si->base = 0x%08x si->flags = 0x%08x", si->base, si->flags);
    }

    /* Extract dynamic section */
    size_t dynamic_count;
    Elf32_Word dynamic_flags;
    phdr_table_get_dynamic_section(phdr, phnum, base, &si->dynamic,
                                   &dynamic_count, &dynamic_flags);
    if (si->dynamic == NULL) {
        if (!relocating_linker) {
            DL_ERR("missing PT_DYNAMIC in \"%s\"", si->name);
        }
        return false;
    } else {
        if (!relocating_linker) {
            DEBUG("dynamic = %p", si->dynamic);
        }
    }

#ifdef ANDROID_ARM_LINKER
    (void) phdr_table_get_arm_exidx(phdr, phnum, base,
                                    &si->ARM_exidx, &si->ARM_exidx_count);
#endif

    // Extract useful information from dynamic section.
    // 从动态连接段.dynamic段获取重要信息
    uint32_t needed_count = 0;
    for (Elf32_Dyn* d = si->dynamic; d->d_tag != DT_NULL; ++d) {
        DEBUG("d = %p, d[0](tag) = 0x%08x d[1](val) = 0x%08x", d, d->d_tag, d->d_un.d_val);
        switch(d->d_tag){
        case DT_HASH:
            si->nbucket = ((unsigned *) (base + d->d_un.d_ptr))[0];
            si->nchain = ((unsigned *) (base + d->d_un.d_ptr))[1];
            si->bucket = (unsigned *) (base + d->d_un.d_ptr + 8);
            si->chain = (unsigned *) (base + d->d_un.d_ptr + 8 + si->nbucket * 4);
            break;
        case DT_STRTAB:
            si->strtab = (const char *) (base + d->d_un.d_ptr);
            break;
        case DT_SYMTAB:
            si->symtab = (Elf32_Sym *) (base + d->d_un.d_ptr);
            break;
        case DT_PLTREL:
            if (d->d_un.d_val != DT_REL) {
                DL_ERR("unsupported DT_RELA in \"%s\"", si->name);
                return false;
            }
            break;
        case DT_JMPREL:
            si->plt_rel = (Elf32_Rel*) (base + d->d_un.d_ptr);
            break;
        case DT_PLTRELSZ:
            si->plt_rel_count = d->d_un.d_val / sizeof(Elf32_Rel);
            break;
        case DT_REL:
            si->rel = (Elf32_Rel*) (base + d->d_un.d_ptr);
            break;
        case DT_RELSZ:
            si->rel_count = d->d_un.d_val / sizeof(Elf32_Rel);
            break;
        case DT_PLTGOT:
            /* Save this in case we decide to do lazy binding. We don't yet. */
            si->plt_got = (unsigned *)(base + d->d_un.d_ptr);
            break;
        case DT_DEBUG:
            // Set the DT_DEBUG entry to the address of _r_debug for GDB
            // if the dynamic table is writable
            if ((dynamic_flags & PF_W) != 0) {
                d->d_un.d_val = (int) &_r_debug;
            }
            break;
         case DT_RELA:
            DL_ERR("unsupported DT_RELA in \"%s\"", si->name);
            return false;
        case DT_INIT:
            si->init_func = reinterpret_cast<linker_function_t>(base + d->d_un.d_ptr);
            DEBUG("%s constructors (DT_INIT) found at %p", si->name, si->init_func);
            break;
        case DT_FINI:
            si->fini_func = reinterpret_cast<linker_function_t>(base + d->d_un.d_ptr);
            DEBUG("%s destructors (DT_FINI) found at %p", si->name, si->fini_func);
            break;
        case DT_INIT_ARRAY:
            si->init_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr);
            DEBUG("%s constructors (DT_INIT_ARRAY) found at %p", si->name, si->init_array);
            break;
        case DT_INIT_ARRAYSZ:
            si->init_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr);
            break;
        case DT_FINI_ARRAY:
            si->fini_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr);
            DEBUG("%s destructors (DT_FINI_ARRAY) found at %p", si->name, si->fini_array);
            break;
        case DT_FINI_ARRAYSZ:
            si->fini_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr);
            break;
        case DT_PREINIT_ARRAY:
            si->preinit_array = reinterpret_cast<linker_function_t*>(base + d->d_un.d_ptr);
            DEBUG("%s constructors (DT_PREINIT_ARRAY) found at %p", si->name, si->preinit_array);
            break;
        case DT_PREINIT_ARRAYSZ:
            si->preinit_array_count = ((unsigned)d->d_un.d_val) / sizeof(Elf32_Addr);
            break;
        case DT_TEXTREL:
            si->has_text_relocations = true;
            break;
        case DT_SYMBOLIC:
            si->has_DT_SYMBOLIC = true;
            break;
        case DT_NEEDED:
            ++needed_count;
            break;
#if defined DT_FLAGS
        // TODO: why is DT_FLAGS not defined?
        case DT_FLAGS:
            if (d->d_un.d_val & DF_TEXTREL) {
                si->has_text_relocations = true;
            }
            if (d->d_un.d_val & DF_SYMBOLIC) {
                si->has_DT_SYMBOLIC = true;
            }
            break;
#endif
#if defined(ANDROID_MIPS_LINKER)
        case DT_STRSZ:
        case DT_SYMENT:
        case DT_RELENT:
             break;
        case DT_MIPS_RLD_MAP:
            // Set the DT_MIPS_RLD_MAP entry to the address of _r_debug for GDB.
            {
              r_debug** dp = (r_debug**) d->d_un.d_ptr;
              *dp = &_r_debug;
            }
            break;
        case DT_MIPS_RLD_VERSION:
        case DT_MIPS_FLAGS:
        case DT_MIPS_BASE_ADDRESS:
        case DT_MIPS_UNREFEXTNO:
            break;

        case DT_MIPS_SYMTABNO:
            si->mips_symtabno = d->d_un.d_val;
            break;

        case DT_MIPS_LOCAL_GOTNO:
            si->mips_local_gotno = d->d_un.d_val;
            break;

        case DT_MIPS_GOTSYM:
            si->mips_gotsym = d->d_un.d_val;
            break;

        default:
            DEBUG("Unused DT entry: type 0x%08x arg 0x%08x", d->d_tag, d->d_un.d_val);
            break;
#endif
        }
    }

    DEBUG("si->base = 0x%08x, si->strtab = %p, si->symtab = %p",
          si->base, si->strtab, si->symtab);

    // Sanity checks.
    if (relocating_linker && needed_count != 0) {
        DL_ERR("linker cannot have DT_NEEDED dependencies on other libraries");
        return false;
    }
    if (si->nbucket == 0) {
        DL_ERR("empty/missing DT_HASH in \"%s\" (built with --hash-style=gnu?)", si->name);
        return false;
    }
    if (si->strtab == 0) {
        DL_ERR("empty/missing DT_STRTAB in \"%s\"", si->name);
        return false;
    }
    if (si->symtab == 0) {
        DL_ERR("empty/missing DT_SYMTAB in \"%s\"", si->name);
        return false;
    }

    // If this is the main executable, then load all of the libraries from LD_PRELOAD now.
    if (si->flags & FLAG_EXE) {
        memset(gLdPreloads, 0, sizeof(gLdPreloads));
        size_t preload_count = 0;
        for (size_t i = 0; gLdPreloadNames[i] != NULL; i++) {
            soinfo* lsi = find_library(gLdPreloadNames[i]);
            if (lsi != NULL) {
                gLdPreloads[preload_count++] = lsi;
            } else {
                // As with glibc, failure to load an LD_PRELOAD library is just a warning.
                DL_WARN("could not load library \"%s\" from LD_PRELOAD for \"%s\"; caused by %s",
                        gLdPreloadNames[i], si->name, linker_get_error_buffer());
            }
        }
    }

    soinfo** needed = (soinfo**) alloca((1 + needed_count) * sizeof(soinfo*));
    soinfo** pneeded = needed;

    for (Elf32_Dyn* d = si->dynamic; d->d_tag != DT_NULL; ++d) {
        if (d->d_tag == DT_NEEDED) {
            const char* library_name = si->strtab + d->d_un.d_val;
            DEBUG("%s needs %s", si->name, library_name);
            soinfo* lsi = find_library(library_name);
            if (lsi == NULL) {
                strlcpy(tmp_err_buf, linker_get_error_buffer(), sizeof(tmp_err_buf));
                DL_ERR("could not load library \"%s\" needed by \"%s\"; caused by %s",
                       library_name, si->name, tmp_err_buf);
                return false;
            }
            *pneeded++ = lsi;
        }
    }
    *pneeded = NULL;

    if (si->has_text_relocations) {
        /* Unprotect the segments, i.e. make them writable, to allow
         * text relocations to work properly. We will later call
         * phdr_table_protect_segments() after all of them are applied
         * and all constructors are run.
         */
        DL_WARN("%s has text relocations. This is wasting memory and is "
                "a security risk. Please fix.", si->name);
        if (phdr_table_unprotect_segments(si->phdr, si->phnum, si->load_bias) < 0) {
            DL_ERR("can't unprotect loadable segments for \"%s\": %s",
                   si->name, strerror(errno));
            return false;
        }
    }

    if (si->plt_rel != NULL) {
        DEBUG("[ relocating %s plt ]", si->name );
        if (soinfo_relocate(si, si->plt_rel, si->plt_rel_count, needed)) {
            return false;
        }
    }
    if (si->rel != NULL) {
        DEBUG("[ relocating %s ]", si->name );
        if (soinfo_relocate(si, si->rel, si->rel_count, needed)) {
            return false;
        }
    }

#ifdef ANDROID_MIPS_LINKER
    if (!mips_relocate_got(si, needed)) {
        return false;
    }
#endif

    si->flags |= FLAG_LINKED;
    DEBUG("[ finished linking %s ]", si->name);

    if (si->has_text_relocations) {
        /* All relocations are done, we can protect our segments back to
         * read-only. */
        if (phdr_table_protect_segments(si->phdr, si->phnum, si->load_bias) < 0) {
            DL_ERR("can't protect segments for \"%s\": %s",
                   si->name, strerror(errno));
            return false;
        }
    }

    /* We can also turn on GNU RELRO protection */
    if (phdr_table_protect_gnu_relro(si->phdr, si->phnum, si->load_bias) < 0) {
        DL_ERR("can't enable GNU RELRO protection for \"%s\": %s",
               si->name, strerror(errno));
        return false;
    }

    notify_gdb_of_load(si);
    return true;
}

通过Android NDK提供的工具 readelf程序 可以查看ELF文件格式相关的信息,执行 readelf -l  xxx.so 命令可以查看ELF文件的链接视图 区节section 和 可执行视图的 段 segment  的映射对应关系如下所示,再结合可执行视图时 .dynamic段 解析所能获取到的一些重要的区节表头的内存相对虚拟地址(VA)和大小(size)信息,可以实现ELF文件的链接视图重要区节section的重建,这也是 ThomasKing 提供的ELF文件节表section修复的思路。现在有些Android加固为了防止Android so库文件的节表section被修复,在外壳Android so库文件的构造函数调用时完成了JNI_Onload函数的代码解密之后,会将外壳Android so库文件的ELF文件头和程序段segment表的信息在内存抹掉,防止外壳Android so库文件的内存dump和dump之后的节表section被修复。




在文章《ELF section修复的一些思考》中,ThomasKing 提供的Android so库文件的节表section修复的思路整理如下:

从segment信息可以看出, 对.dynamic和.arm_exidx的section重建很简单,即读取即可。
 通过.dynamic段,可以对大部分section进行重建,具体如下:

1. 通过DT_SYMTAB,DT_STRTAB,DT_STRSZ,DT_REL,DT_RELSZ,DT_JMPREL, DT_PLTRELSZ,DT_INIT_ARRAY,DT_INIT_ARRAYSZ,DT_FINI_ARRAY,DT_FINI_ARRAYSZ 得到.dynsym,.dynstr,  rel.dyn,  rel.plt,  init_array,  fini_array 相应的section vaddr 和 size信息,完成对上述section的重建。这里需要注意,处于load2中的section,offset = vaddr – 0x1000。

2. 通过DT_HASH得到hash section的vaddr,然后读入前两项得到nbucket和nchain的值,得到hashsz = (nbucket + nchain + 2) * sizeof(int), 完成对hash表重建。

3. Plt的起始位置即为rel.plt的末尾,通过1中的对rel.plt的处理,即可得到plt的offset和vaddr信息。通过plt的结构知道,plt由固定16字节 + 4字节的__global__offset_table变量和n个需要重定位的函数地址构成,函数地址又与rel.plt中的结构一一对应。故size = (20 + 12 * (rel.plt.size) / sizeof(Elf32_Rel)。

4.  从DT_PLTGOT可以得到__global_offset_table的偏移位置。由got表的结构知道,__global_offset_table前是rel.dyn重定位结构,之后为rel.plt重定位结构,都与rel一一对应。则got表的重建具体为:通过已重建的.dynamic得到got起始位置,通过__global_offset_table 偏移 + 4 * (rel.plt.size) / sizeof(Elf32_Rel)(这里还需要添加2个int的填充位置)得到got的末尾,通过首尾位置得到got的size,完成重建。

5. 通过got的末尾,得到data的起始位置,再通过load2_vaddr + load2_filesz得到load2的末尾(load2即第二个LOAD),即data的末尾位置,计算长度,完成修正。可能读者会问,bss才是load2的最后一个section。的确,但bss为NOBITS,即可把data看作load2最后一个section。

6. 对bss的修正就很简单,offset和vaddr即为load2末尾。由于未NOBITS类型,长度信息无关紧要。

7. 到这里,读者可能已经发现,还没对text和ARM.extab修正。限于本人水平,还没能找到方法区分开这两个section。现处理是将之合并,作为text & ARM.extab节。具体修正:offset和vaddr通过plt末尾得到,长度通过ARM.exidx的起始位置和plt末尾位置计算得到。

8.  至此,绝大部分section信息已经重建完成。最后,在将shstrtab添加,并修正Elf32_Ehdr,完成section重建。虽然未100%重建,但已经能够帮助分析了。重建后的如图所示,图中红色部分即是未分离的test & ARM.extab section。


文章《ELF文件格式学习,section修复》就是根据ThomasKing 提供的Android so库文件的节表section修复的思路实现的代码,但是该作者提供的代码还是有一些小问题,比如说,关于ELF文件的节表section修复时候,申请存放section头表内存的大小(应该使用elf文件加载到内存后的文件大小,因为Android so加固会修改ELF文件头中关于section区节的描述变量如偏移、大小等信息)以及构造的seciton区节名称字符串表的存放文件偏移有点小问题(第2个P_LOAD段结束的位置偏移),不应该按照这个思路去处理,并且作者给出的代码只能适用于从内存中dump出的Android so库文件的修复,考虑的还不是很周到。本来打算将作者的代码优化和修改一下的,但是没那么多精力,就不献丑了,还是要感谢原作者王一诺和ThomasKing。



文章《ELF文件格式学习,section修复》的作者在进行seciton重建的时候,对区节section段的描述结构体 Elf32_Shdr  中,除sh_addr、sh_offset、sh_size、sh_name之外的其他成员变量的信息没有修正,其实修正也很简单,直接按照下图中 Android so库文件 链接视图中区节section信息 进行对应区节section头表段成员变量属性值的修正。通过Android NDK 提供的工具readelf,执行 readelf –S 命令,即可得到Android so库文件的链接视图时的各区节section段的描述结构体Elf32_Shdr的其他成员变量的属性值,对照着对应的段进行Elf32_Shdr结构体其他成员变量的属性值的修正。

typedef struct elf32_shdr {
  Elf32_Word	sh_name;
  Elf32_Word	sh_type;
  Elf32_Word	sh_flags;
  Elf32_Addr	sh_addr;
  Elf32_Off	sh_offset;
  Elf32_Word	sh_size;
  Elf32_Word	sh_link;
  Elf32_Word	sh_info;
  Elf32_Word	sh_addralign;
  Elf32_Word	sh_entsize;
} Elf32_Shdr;

typedef struct elf64_shdr {
  Elf64_Word sh_name;	/* Section name, index in string tbl */
  Elf64_Word sh_type;	/* Type of section */
  Elf64_Xword sh_flags;	/* Miscellaneous section attributes */
  Elf64_Addr sh_addr;	/* Section virtual addr at execution */
  Elf64_Off sh_offset;	/* Section file offset */
  Elf64_Xword sh_size;	/* Size of section in bytes */
  Elf64_Word sh_link;	/* Index of another section */
  Elf64_Word sh_info;	/* Additional section information */
  Elf64_Xword sh_addralign;	/* Section alignment */
  Elf64_Xword sh_entsize;	/* Entry size if section holds table */
} Elf64_Shdr;


文章《ELF文件格式学习,section修复》的作者对 ThomasKing 提出的ELF文件的区节表section修复方案的思考和疑问。




三、对文章《ELF文件格式学习,section修复》中的代码进行分析。

对文章《ELF文件格式学习,section修复》中 提到的代码进行了注释分析,工程主要有3个源码文件 elf.hfix.hfix.c 组成,Android so库文件区节section修复主要操作的源码文件 fix.c 的代码注释如下:

#define _CRT_SECURE_NO_WARNINGS
#include "fix.h"

#ifndef SHT_ARM_EXIDX
#define SHT_ARM_EXIDX (SHT_LOPROC + 1)
#endif

#define SHT_INIT_ARRAY      14
#define SHT_FINI_ARRAY      15

#define SHF_LINK_ORDER	     (1 << 7)	/* Preserve order after combining */

char* str = "..dynsym..dynstr..hash..rel.dyn..rel.plt..text..ARM.extab..ARM.exidx..fini_array..init_array..dynamic..got..data..bass..shstrtab\0";
char* str1 = "..dynsym\0.dynstr\0.hash\0.rel.dyn\0.rel.plt\0.text\0.ARM.extab\0.ARM.exidx\0.fini_array\0.init_array\0.dynamic\0.got\0.data\0.bass\0.shstrtab\0";
Elf32_Shdr shdr[SHDRS] = { 0 };


// 读取ELF文件的Elf32_Ehdr信息
void get_elf_header(char* buffer, Elf32_Ehdr** pehdr)
{
	int header_len = sizeof(Elf32_Ehdr);
	memset(*pehdr, 0, header_len);
	memcpy(*pehdr, (void*)buffer, header_len);
}

// 读取ELF文件的程序头表的信息
void get_program_table(Elf32_Ehdr ehdr, char* buffer, Elf32_Phdr** pphdr)
{
	int ph_size = ehdr.e_phentsize;
	int ph_num = ehdr.e_phnum;
	memset(*pphdr, 0, ph_size * ph_num);
	memcpy(*pphdr, buffer + ehdr.e_phoff,ph_size * ph_num);
}


// 获取需要修复的Android so文件的大小
long get_file_len(FILE* p)
{
    fseek (p, 0, SEEK_END);

    // 获取到整个文件的大小
    long fsize = ftell (p);

    // 重新设置文件指针到开头
    rewind (p);
    return fsize; 
}

// 进行需要修复的ELF文件的区节头表的重建
void get_Info(Elf32_Phdr* phdr, Elf32_Ehdr *pehdr, char* buffer,
	char** sh_buffer, int sh_len)
{
	Elf32_Dyn* dyn = NULL;
	Elf32_Dyn* d = NULL;
	Elf32_Phdr load = { 0 };
	

	int ph_num = pehdr->e_phnum;
	int dyn_size = 0, dyn_off = 0;
	int nbucket = 0, nchain = 0;
	int flag = 0, i = 0;

	// 用于存放ELF文件的区节头表信息
	memset(*sh_buffer, 0, sh_len);

	i = 0;
	for(;i < ph_num;i++) {

		if (phdr[i].p_type == PT_LOAD) {

			if (phdr[i].p_vaddr > 0x0) {

				load = phdr[i];

				// 进行 .bss 区节头的重建
				shdr[BSS].sh_name = strstr(str,".bss") - str;
				shdr[BSS].sh_type = SHT_NOBITS;
				shdr[BSS].sh_flags = SHF_WRITE | SHF_ALLOC;
				shdr[BSS].sh_addr =  phdr[i].p_vaddr + phdr[i].p_filesz;
				shdr[BSS].sh_offset = shdr[BSS].sh_addr - 0x1000;
				shdr[BSS].sh_size = 0;
				shdr[BSS].sh_link = 0;
				shdr[BSS].sh_info = 0;
				shdr[BSS].sh_entsize = 0
				shdr[BSS].sh_addralign = 1;

				continue;
			}
		}

		if(phdr[i].p_type == PT_DYNAMIC) {

			// 进行 .dynamic 区节头的重建
			// 设置".dynamic"区节头名称在.shstr.tab中的偏移值
			shdr[DYNAMIC].sh_name = strstr(str, ".dynamic") - str;
			shdr[DYNAMIC].sh_type = SHT_DYNAMIC;
			shdr[DYNAMIC].sh_flags = SHF_WRITE | SHF_ALLOC;
			shdr[DYNAMIC].sh_addr = phdr[i].p_vaddr;
			shdr[DYNAMIC].sh_offset = phdr[i].p_offset;
			shdr[DYNAMIC].sh_size = phdr[i].p_filesz;
			shdr[DYNAMIC].sh_link = 2;
			shdr[DYNAMIC].sh_info = 0;
			shdr[DYNAMIC].sh_addralign = 4;
			shdr[DYNAMIC].sh_entsize = 8;

			// 得到.dynamic区节段的数据
    		dyn_off = phdr[i].p_offset;
			dyn_size = phdr[i].p_filesz;
    		continue;
		}

		// ThomasKing修复时使用的是PT_LOPROC + 1
		if(phdr[i].p_type == PT_LOPROC || phdr[i].p_type == PT_LOPROC + 1) {

			// 进行".ARM.exidx" 区节头的重建
			shdr[ARMEXIDX].sh_name = strstr(str, ".ARM.exidx") - str;
			shdr[ARMEXIDX].sh_type = SHT_ARM_EXIDX;
			shdr[ARMEXIDX].sh_flags = SHF_ALLOC + SHF_LINK_ORDER;
			shdr[ARMEXIDX].sh_addr = phdr[i].p_vaddr;
			shdr[ARMEXIDX].sh_offset = phdr[i].p_offset;
			shdr[ARMEXIDX].sh_size = phdr[i].p_filesz;
			shdr[ARMEXIDX].sh_link = 7;
			shdr[ARMEXIDX].sh_info = 0;
			shdr[ARMEXIDX].sh_addralign = 4;
			shdr[ARMEXIDX].sh_entsize = 8;
			continue;
		}
	}

	// 申请内存空间
	dyn = (Elf32_Dyn*)malloc(dyn_size);
	// 获取整个".dynamic"区节的数据(Elf32_Dyn[]数组)
	memcpy(dyn, buffer+dyn_off, dyn_size);

	i = 0;
	// 对".dynamic"区节的数据进行解析处理
	for (; i < dyn_size / sizeof(Elf32_Dyn); i++) {

		switch (dyn[i].d_tag) {

			case DT_SYMTAB:
				// 对动态符号表 .dynsym 区节头进行重建
				shdr[DYNSYM].sh_name = strstr(str, ".dynsym") - str;
				shdr[DYNSYM].sh_type = SHT_DYNSYM;
				shdr[DYNSYM].sh_flags = SHF_ALLOC;
				shdr[DYNSYM].sh_addr = dyn[i].d_un.d_ptr;
				shdr[DYNSYM].sh_offset = dyn[i].d_un.d_ptr;
				shdr[DYNSYM].sh_link = 2;
				shdr[DYNSYM].sh_info = 1;
				shdr[DYNSYM].sh_addralign = 4;
				shdr[DYNSYM].sh_entsize = 16;
				// shdr[DYNSYM].sh_size还需要修复
				break;

			case DT_STRTAB:
				// 对动态符号表 .dynstr 区节头进行重建
				shdr[DYNSTR].sh_name = strstr(str, ".dynstr") - str;
				shdr[DYNSTR].sh_type = SHT_STRTAB;
				shdr[DYNSTR].sh_flags = SHF_ALLOC;
				shdr[DYNSTR].sh_offset = dyn[i].d_un.d_ptr;
				shdr[DYNSTR].sh_addr = dyn[i].d_un.d_ptr;
				// 添加的
				shdr[DYNSYM].sh_link = 0;
				shdr[DYNSYM].sh_info = 0;
				//
				shdr[DYNSTR].sh_addralign = 1;
				shdr[DYNSTR].sh_entsize = 0;
				break;

			case DT_HASH:
				// 对符号哈希表 .hash 的区节头进行重建
				shdr[HASH].sh_name = strstr(str, ".hash") - str;
				shdr[HASH].sh_type = SHT_HASH;
				shdr[HASH].sh_flags = SHF_ALLOC;
				shdr[HASH].sh_addr = dyn[i].d_un.d_ptr;
				shdr[HASH].sh_offset = dyn[i].d_un.d_ptr;
				memcpy(&nbucket, buffer + shdr[HASH].sh_offset, 4);
				memcpy(&nchain, buffer + shdr[HASH].sh_offset + 4, 4);
				// 和.hash区节的数据结构有关
				shdr[HASH].sh_size = (nbucket + nchain + 2) * sizeof(int);
				shdr[HASH].sh_link = 1;
				shdr[HASH].sh_info = 0;
				shdr[HASH].sh_addralign = 4;
				shdr[HASH].sh_entsize = 4;	
				break;

			case DT_REL:
				// 对 .rel.dyn 的区节头进行重建
				shdr[RELDYN].sh_name = strstr(str, ".rel.dyn") - str;
				shdr[RELDYN].sh_type = SHT_REL;
				shdr[RELDYN].sh_flags = SHF_ALLOC;
				shdr[RELDYN].sh_addr = dyn[i].d_un.d_ptr;
				shdr[RELDYN].sh_offset = dyn[i].d_un.d_ptr;
				shdr[RELDYN].sh_link = 1;
				shdr[RELDYN].sh_info = 0;
				shdr[RELDYN].sh_addralign = 4;
				shdr[RELDYN].sh_entsize = 8;
				break;

			case DT_JMPREL:
				// 对 .rel.plt 的区节头进行重建
				shdr[RELPLT].sh_name = strstr(str, ".rel.plt") - str;
				shdr[RELPLT].sh_type = SHT_REL;
				shdr[RELPLT].sh_flags = SHF_ALLOC;
				shdr[RELPLT].sh_addr = dyn[i].d_un.d_ptr;
				shdr[RELPLT].sh_offset = dyn[i].d_un.d_ptr;
				shdr[RELPLT].sh_link = 1;
				shdr[RELPLT].sh_info = 6;
				shdr[RELPLT].sh_addralign = 4;
				shdr[RELPLT].sh_entsize = 8;
				break;

			case DT_PLTRELSZ:
				shdr[RELPLT].sh_size = dyn[i].d_un.d_val;
				break;

			case DT_FINI:
				// 对.fini_array 的区节头进行重建
				shdr[FINIARRAY].sh_name = strstr(str, ".fini_array") - str;
				shdr[FINIARRAY].sh_type = SHT_FINI_ARRAY;
				shdr[FINIARRAY].sh_flags = SHF_WRITE | SHF_ALLOC;
				shdr[FINIARRAY].sh_offset = dyn[i].d_un.d_ptr - 0x1000;
				shdr[FINIARRAY].sh_addr = dyn[i].d_un.d_ptr;
				shdr[FINIARRAY].sh_link = 0
				shdr[FINIARRAY].sh_info = 0
				shdr[FINIARRAY].sh_addralign = 4;
				shdr[FINIARRAY].sh_entsize = 0;
				break;

			case DT_INIT:
				// 对.init_array 的区节头进行重建
				shdr[INITARRAY].sh_name = strstr(str, ".init_array") - str;
				shdr[INITARRAY].sh_type = SHT_INIT_ARRAY;
				shdr[INITARRAY].sh_flags = SHF_WRITE | SHF_ALLOC;
				shdr[INITARRAY].sh_offset = dyn[i].d_un.d_ptr - 0x1000;
				shdr[INITARRAY].sh_addr = dyn[i].d_un.d_ptr;
				shdr[INITARRAY].sh_link = 0;
				shdr[INITARRAY].sh_info = 0;
				shdr[INITARRAY].sh_addralign = 4;
				shdr[INITARRAY].sh_entsize = 0;
				break;

			case DT_RELSZ:
				shdr[RELDYN].sh_size = dyn[i].d_un.d_val;
				break;
			
			case DT_STRSZ:
				shdr[DYNSTR].sh_size = dyn[i].d_un.d_val;
				break;

			case DT_PLTGOT:
				// 对.got 的区节头进行重建
				shdr[GOT].sh_name = strstr(str, ".got") - str;
				shdr[GOT].sh_type = SHT_PROGBITS;
				shdr[GOT].sh_flags = SHF_WRITE | SHF_ALLOC; 
				shdr[GOT].sh_addr = shdr[DYNAMIC].sh_addr + shdr[DYNAMIC].sh_size;
				shdr[GOT].sh_offset = shdr[GOT].sh_addr - 0x1000;
				// 需要后面修正
				shdr[GOT].sh_size = dyn[i].d_un.d_ptr;
				shdr[GOT].sh_link = 0;
				shdr[GOT].sh_info = 0;
				shdr[GOT].sh_addralign = 4;
				shdr[GOT].sh_entsize = 0;
				break;
		}
	}
	// .got区节数据的大小
	shdr[GOT].sh_size = shdr[GOT].sh_size + 4 * (shdr[RELPLT].sh_size) / sizeof(Elf32_Rel) + 3 * sizeof(int) - shdr[GOT].sh_addr;

	//STRTAB地址 - SYMTAB地址 = SYMTAB大小
	shdr[DYNSYM].sh_size = shdr[DYNSTR].sh_addr - shdr[DYNSYM].sh_addr;

	shdr[FINIARRAY].sh_size = shdr[INITARRAY].sh_addr - shdr[FINIARRAY].sh_addr;
	shdr[INITARRAY].sh_size = shdr[DYNAMIC].sh_addr - shdr[INITARRAY].sh_addr;
	
	// 对.plt 的区节头进行重建
	shdr[PLT].sh_name = strstr(str, ".plt") - str;
	shdr[PLT].sh_type = SHT_PROGBITS;
	shdr[PLT].sh_flags = SHF_ALLOC | SHF_EXECINSTR;
	shdr[PLT].sh_addr = shdr[RELPLT].sh_addr + shdr[RELPLT].sh_size;
	shdr[PLT].sh_offset = shdr[PLT].sh_addr;
	shdr[PLT].sh_size = (20 + 12 * (shdr[RELPLT].sh_size) / sizeof(Elf32_Rel));
	shdr[PLT].sh_link = 0;
	shdr[PLT].sh_info = 0;
	shdr[PLT].sh_entsize = 0;
	shdr[PLT].sh_addralign = 4;

	// 对.text 的区节头进行重建( .text 与 .ARM.text 区节暂时无法分离开)
	shdr[TEXT].sh_name = strstr(str, ".text") - str;
	shdr[TEXT].sh_type = SHT_PROGBITS;
	shdr[TEXT].sh_flags = SHF_ALLOC | SHF_EXECINSTR;
	shdr[TEXT].sh_addr = shdr[PLT].sh_addr + shdr[PLT].sh_size;
	shdr[TEXT].sh_offset = shdr[TEXT].sh_addr;
	// 注意
	shdr[TEXT].sh_size = shdr[ARMEXIDX].sh_addr - shdr[TEXT].sh_addr;
	shdr[TEXT].sh_link = 0
	shdr[TEXT].sh_info = 0
	shdr[TEXT].sh_entsize = 0
	shdr[TEXT].sh_addralign = 4
	
	// 对.data 的区节头进行重建
	shdr[DATA].sh_name = strstr(str, ".data") - str;
	shdr[DATA].sh_type = SHT_PROGBITS;

	shdr[DATA].sh_flags = SHF_WRITE | SHF_ALLOC;
	shdr[DATA].sh_addr = shdr[GOT].sh_addr + shdr[GOT].sh_size;
	shdr[DATA].sh_offset = shdr[DATA].sh_addr - 0x1000;
	shdr[DATA].sh_size = load.p_vaddr + load.p_filesz - shdr[DATA].sh_addr;
	shdr[DATA].sh_link = 0
	shdr[DATA].sh_info = 0
	shdr[DATA].sh_entsize = 0
	shdr[DATA].sh_addralign = 4;

	// 对.shstrtab 区节头的重建
	shdr[STRTAB].sh_name = strstr(str, ".shstrtab") - str;
	shdr[STRTAB].sh_type = SHT_STRTAB;
	shdr[STRTAB].sh_flags = SHT_NULL;
	shdr[STRTAB].sh_addr = 0;
	shdr[STRTAB].sh_offset = shdr[BSS].sh_addr - 0x1000;
	shdr[STRTAB].sh_size = strlen(str) + 1;
	shdr[STRTAB].sh_link = 0;
	shdr[STRTAB].sh_info = 0;
	shdr[STRTAB].sh_entsize = 0;
	shdr[STRTAB].sh_addralign = 1;

	//memcpy(buffer + shdr[STRTAB].sh_offset, str, strlen(str));
	// 将ELF文件的区节头表信息拷贝到指定内存中
	memcpy(*sh_buffer, shdr, sizeof(shdr));
}


// main函数(ELF32的Android so的修复)
// 一个传入参数:需要修复的Android so文件路径
// 例如: needFix.so,修复后的so文件名称为fix.so
int main(int argc, char const *argv[])
{
	FILE* fr = NULL;
	long flen = 0;
	FILE* fw = NULL;
	int ph_len = 0;
	char* buffer = NULL;
	char* sh_buffer = NULL;
	Elf32_Ehdr *pehdr = NULL;
	Elf32_Phdr* pphdr = NULL;
	char arr[2048] = { 0 };

	// 传入参数检查
	if (argc < 2) {

		printf("less args\n");
		return;
	}

	// 打开需要修复的Android so文件
	fr = fopen(argv[1], "rb");
	if(fr == NULL) {

		printf("Open failed: \n");
		goto error;
	}

	// 获取需要修复的Android so文件的大小
	flen = get_file_len(fr);

	// 申请内存空间存放需要修复的Android so文件
	buffer = (char*)malloc(sizeof(char)*flen);
	if (buffer == NULL) {

		printf("Malloc error\n");
		goto error;
	}

	// 读取需要整个修复的Android so文件到申请的内存空间中
	size_t result = fread (buffer, 1, flen, fr);
	if (result != flen) {

		printf("Reading error\n");
		goto error;
	}

	// 创建新文件 fix.so 用于保存修复后的Android so
	fw = fopen("fix.so","wb");
	if(fw == NULL) {

		printf("Open failed: fix.so\n");
		goto error;
	}
	
	pehdr = (Elf32_Ehdr*)malloc(sizeof(Elf32_Ehdr));
	// 读取ELF文件的Elf32_Ehdr信息到申请的内存空间中
	get_elf_header(buffer, &pehdr);

	// 获取ELF文件的程序头Elf32_Phdr表的大小
	ph_len = pehdr->e_phentsize * pehdr->e_phnum;
	pphdr = (Elf32_Phdr*)malloc(ph_len);
	// 读取ELF文件的程序头表的信息到申请的内存空间中
	get_program_table(*pehdr, buffer, &pphdr);

	// 这个地方有一点问题
	// 申请内存到用于存放ELF文件的区节头表信息
	sh_buffer = (char* )malloc(pehdr->e_shentsize * pehdr->e_shnum);
	// 进行需要修复的Android so的区节头表的重建
	get_Info(pphdr, pehdr, buffer, &sh_buffer, pehdr->e_shentsize * pehdr->e_shnum);
	
	// 将重建后的ELF文件的区节头表信息进行回写和更正
	memcpy(buffer + pehdr->e_shoff, sh_buffer, pehdr->e_shentsize * pehdr->e_shnum);

	// 修复Android so文件的ELF文件头中关于节头表的信息
	pehdr->e_shnum = SHDRS;
	pehdr->e_shstrndx = SHDRS - 1;
	memcpy(buffer, pehdr, sizeof(Elf32_Ehdr));

	// SHSTRTAB
	// 新增.shstrtab 节数据到需要修复的Android so文件中
	memcpy(buffer + shdr[STRTAB].sh_offset, str1, strlen(str) + 1);

	// 将修复的信息更新写入到新的文件fix.so中
	fwrite(buffer, sizeof(char)*flen, 1, fw);

error:
	if(fw != NULL)
		fclose(fw);
	if(fr != NULL)
		fclose(fr);
	if(buffer != NULL)
		free(buffer);
	return 0;
}

头文件 elf.h 的代码如下:

#ifndef _QEMU_ELF_H
#define _QEMU_ELF_H
#include <inttypes.h>
/* 32-bit ELF base types. */
typedef uint32_t Elf32_Addr;
typedef uint16_t Elf32_Half;
typedef uint32_t Elf32_Off;
typedef int32_t  Elf32_Sword;
typedef uint32_t Elf32_Word;
/* 64-bit ELF base types. */
typedef uint64_t Elf64_Addr;
typedef uint16_t Elf64_Half;
typedef int16_t	 Elf64_SHalf;
typedef uint64_t Elf64_Off;
typedef int32_t	 Elf64_Sword;
typedef uint32_t Elf64_Word;
typedef uint64_t Elf64_Xword;
typedef int64_t  Elf64_Sxword;
/* These constants are for the segment types stored in the image headers */
#define PT_NULL    0
#define PT_LOAD    1
#define PT_DYNAMIC 2
#define PT_INTERP  3
#define PT_NOTE    4
#define PT_SHLIB   5
#define PT_PHDR    6
#define PT_LOPROC  0x70000000
#define PT_HIPROC  0x7fffffff
#define PT_MIPS_REGINFO	0x70000000
#define PT_MIPS_OPTIONS	0x70000001
/* Flags in the e_flags field of the header */
/* MIPS architecture level. */
#define EF_MIPS_ARCH_1	0x00000000	/* -mips1 code.  */
#define EF_MIPS_ARCH_2	0x10000000	/* -mips2 code.  */
#define EF_MIPS_ARCH_3	0x20000000	/* -mips3 code.  */
#define EF_MIPS_ARCH_4	0x30000000	/* -mips4 code.  */
#define EF_MIPS_ARCH_5	0x40000000	/* -mips5 code.  */
#define EF_MIPS_ARCH_32	0x50000000	/* MIPS32 code.  */
#define EF_MIPS_ARCH_64	0x60000000	/* MIPS64 code.  */
/* The ABI of a file. */
#define EF_MIPS_ABI_O32	0x00001000	/* O32 ABI.  */
#define EF_MIPS_ABI_O64	0x00002000	/* O32 extended for 64 bit.  */
#define EF_MIPS_NOREORDER 0x00000001
#define EF_MIPS_PIC       0x00000002
#define EF_MIPS_CPIC      0x00000004
#define EF_MIPS_ABI2	0x00000020
#define EF_MIPS_OPTIONS_FIRST	0x00000080
#define EF_MIPS_32BITMODE	0x00000100
#define EF_MIPS_ABI	0x0000f000
#define EF_MIPS_ARCH      0xf0000000
/* These constants define the different elf file types */
#define ET_NONE   0
#define ET_REL    1
#define ET_EXEC   2
#define ET_DYN    3
#define ET_CORE   4
#define ET_LOPROC 0xff00
#define ET_HIPROC 0xffff
/* These constants define the various ELF target machines */
#define EM_NONE  0
#define EM_M32   1
#define EM_SPARC 2
#define EM_386   3
#define EM_68K   4
#define EM_88K   5
#define EM_486   6   /* Perhaps disused */
#define EM_860   7
#define EM_MIPS	8	/* MIPS R3000 (officially, big-endian only) */
#define EM_MIPS_RS4_BE 10	/* MIPS R4000 big-endian */
#define EM_PARISC      15	/* HPPA */
#define EM_SPARC32PLUS 18	/* Sun's "v8plus" */
#define EM_PPC	       20	/* PowerPC */
#define EM_PPC64       21       /* PowerPC64 */
#define EM_ARM	40	/* ARM */
#define EM_SH	       42	/* SuperH */
#define EM_SPARCV9     43	/* SPARC v9 64-bit */
#define EM_IA_64	50	/* HP/Intel IA-64 */
#define EM_X86_64	62	/* AMD x86-64 */
#define EM_S390	22	/* IBM S/390 */
#define EM_CRIS         76      /* Axis Communications 32-bit embedded processor */
#define EM_V850	87	/* NEC v850 */
#define EM_H8_300H      47      /* Hitachi H8/300H */
#define EM_H8S          48      /* Hitachi H8S     */
/*
 * This is an interim value that we will use until the committee comes
 * up with a final number.
 */
#define EM_ALPHA	0x9026
/* Bogus old v850 magic number, used by old tools.  */
#define EM_CYGNUS_V850	0x9080
/*
 * This is the old interim value for S/390 architecture
 */
#define EM_S390_OLD     0xA390
/* This is the info that is needed to parse the dynamic section of the file */
#define DT_NULL	0
#define DT_NEEDED	1
#define DT_PLTRELSZ	2
#define DT_PLTGOT	3
#define DT_HASH		4
#define DT_STRTAB	5
#define DT_SYMTAB	6
#define DT_RELA		7
#define DT_RELASZ	8
#define DT_RELAENT	9
#define DT_STRSZ	10
#define DT_SYMENT	11
#define DT_INIT		25
#define DT_FINI		26
#define DT_SONAME	14
#define DT_RPATH 	15
#define DT_SYMBOLIC	16
#define DT_REL	    17
#define DT_RELSZ	18
#define DT_RELENT	19
#define DT_PLTREL	20
#define DT_DEBUG	21
#define DT_TEXTREL	22
#define DT_JMPREL	23
#define DT_LOPROC	0x70000000
#define DT_HIPROC	0x7fffffff
#define DT_MIPS_RLD_VERSION	0x70000001
#define DT_MIPS_TIME_STAMP	0x70000002
#define DT_MIPS_ICHECKSUM	0x70000003
#define DT_MIPS_IVERSION	0x70000004
#define DT_MIPS_FLAGS	0x70000005
#define RHF_NONE	  0
#define RHF_HARDWAY	  1
#define RHF_NOTPOT	  2
#define DT_MIPS_BASE_ADDRESS	0x70000006
#define DT_MIPS_CONFLICT	0x70000008
#define DT_MIPS_LIBLIST	0x70000009
#define DT_MIPS_LOCAL_GOTNO	0x7000000a
#define DT_MIPS_CONFLICTNO	0x7000000b
#define DT_MIPS_LIBLISTNO	0x70000010
#define DT_MIPS_SYMTABNO	0x70000011
#define DT_MIPS_UNREFEXTNO	0x70000012
#define DT_MIPS_GOTSYM	0x70000013
#define DT_MIPS_HIPAGENO	0x70000014
#define DT_MIPS_RLD_MAP	0x70000016
/* This info is needed when parsing the symbol table */
#define STB_LOCAL  0
#define STB_GLOBAL 1
#define STB_WEAK   2
#define STT_NOTYPE  0
#define STT_OBJECT  1
#define STT_FUNC    2
#define STT_SECTION 3
#define STT_FILE    4
#define ELF_ST_BIND(x)	((x) >> 4)
#define ELF_ST_TYPE(x)	(((unsigned int) x) & 0xf)
#define ELF32_ST_BIND(x)	ELF_ST_BIND(x)
#define ELF32_ST_TYPE(x)	ELF_ST_TYPE(x)
#define ELF64_ST_BIND(x)	ELF_ST_BIND(x)
#define ELF64_ST_TYPE(x)	ELF_ST_TYPE(x)
/* Symbolic values for the entries in the auxiliary table
   put on the initial stack */
#define AT_NULL   0	/* end of vector */
#define AT_IGNORE 1	/* entry should be ignored */
#define AT_EXECFD 2	/* file descriptor of program */
#define AT_PHDR   3	/* program headers for program */
#define AT_PHENT  4	/* size of program header entry */
#define AT_PHNUM  5	/* number of program headers */
#define AT_PAGESZ 6	/* system page size */
#define AT_BASE   7	/* base address of interpreter */
#define AT_FLAGS  8	/* flags */
#define AT_ENTRY  9	/* entry point of program */
#define AT_NOTELF 10	/* program is not ELF */
#define AT_UID    11	/* real uid */
#define AT_EUID   12	/* effective uid */
#define AT_GID    13	/* real gid */
#define AT_EGID   14	/* effective gid */
#define AT_PLATFORM 15  /* string identifying CPU for optimizations */
#define AT_HWCAP  16    /* arch dependent hints at CPU capabilities */
#define AT_CLKTCK 17	/* frequency at which times() increments */

typedef struct dynamic{
  Elf32_Sword d_tag;
  union{
    Elf32_Sword	d_val;
    Elf32_Addr	d_ptr;
  } d_un;
} Elf32_Dyn;
typedef struct {
  Elf64_Sxword d_tag;	/* entry tag value */
  union {
    Elf64_Xword d_val;
    Elf64_Addr d_ptr;
  } d_un;
} Elf64_Dyn;

/* The following are used with relocations */
#define ELF32_R_SYM(x) ((x) >> 8)
#define ELF32_R_TYPE(x) ((x) & 0xff)
#define ELF64_R_SYM(i)	((i) >> 32)
#define ELF64_R_TYPE(i)	((i) & 0xffffffff)
#define ELF64_R_TYPE_DATA(i)            (((ELF64_R_TYPE(i) >> 8) ^ 0x00800000) - 0x00800000)
#define R_386_NONE	0
#define R_386_32	1
#define R_386_PC32	2
#define R_386_GOT32	3
#define R_386_PLT32	4
#define R_386_COPY	5
#define R_386_GLOB_DAT	6
#define R_386_JMP_SLOT	7
#define R_386_RELATIVE	8
#define R_386_GOTOFF	9
#define R_386_GOTPC	10
#define R_386_NUM	11
#define R_MIPS_NONE	0
#define R_MIPS_16	1
#define R_MIPS_32	2
#define R_MIPS_REL32	3
#define R_MIPS_26	4
#define R_MIPS_HI16	5
#define R_MIPS_LO16	6
#define R_MIPS_GPREL16	7
#define R_MIPS_LITERAL	8
#define R_MIPS_GOT16	9
#define R_MIPS_PC16	10
#define R_MIPS_CALL16	11
#define R_MIPS_GPREL32	12
/* The remaining relocs are defined on Irix, although they are not
   in the MIPS ELF ABI.  */
#define R_MIPS_UNUSED1	13
#define R_MIPS_UNUSED2	14
#define R_MIPS_UNUSED3	15
#define R_MIPS_SHIFT5	16
#define R_MIPS_SHIFT6	17
#define R_MIPS_64	18
#define R_MIPS_GOT_DISP	19
#define R_MIPS_GOT_PAGE	20
#define R_MIPS_GOT_OFST	21
/*
 * The following two relocation types are specified in the MIPS ABI
 * conformance guide version 1.2 but not yet in the psABI.
 */
#define R_MIPS_GOTHI16	22
#define R_MIPS_GOTLO16	23
#define R_MIPS_SUB	24
#define R_MIPS_INSERT_A	25
#define R_MIPS_INSERT_B	26
#define R_MIPS_DELETE	27
#define R_MIPS_HIGHER	28
#define R_MIPS_HIGHEST	29
/*
 * The following two relocation types are specified in the MIPS ABI
 * conformance guide version 1.2 but not yet in the psABI.
 */
#define R_MIPS_CALLHI16	30
#define R_MIPS_CALLLO16	31
/*
 * This range is reserved for vendor specific relocations.
 */
#define R_MIPS_LOVENDOR	100
#define R_MIPS_HIVENDOR	127
/*
 * Sparc ELF relocation types
 */
#define	R_SPARC_NONE	0
#define	R_SPARC_8	1
#define	R_SPARC_16	2
#define	R_SPARC_32	3
#define	R_SPARC_DISP8	4
#define	R_SPARC_DISP16	5
#define	R_SPARC_DISP32	6
#define	R_SPARC_WDISP30	7
#define	R_SPARC_WDISP22	8
#define	R_SPARC_HI22	9
#define	R_SPARC_22	10
#define	R_SPARC_13	11
#define	R_SPARC_LO10	12
#define	R_SPARC_GOT10	13
#define	R_SPARC_GOT13	14
#define	R_SPARC_GOT22	15
#define	R_SPARC_PC10	16
#define	R_SPARC_PC22	17
#define	R_SPARC_WPLT30	18
#define	R_SPARC_COPY	19
#define	R_SPARC_GLOB_DAT	20
#define	R_SPARC_JMP_SLOT	21
#define	R_SPARC_RELATIVE	22
#define	R_SPARC_UA32	23
#define R_SPARC_PLT32	24
#define R_SPARC_HIPLT22	25
#define R_SPARC_LOPLT10	26
#define R_SPARC_PCPLT32	27
#define R_SPARC_PCPLT22	28
#define R_SPARC_PCPLT10	29
#define R_SPARC_10	30
#define R_SPARC_11	31
#define R_SPARC_64	32
#define R_SPARC_OLO10           33
#define R_SPARC_HH22            34
#define R_SPARC_HM10            35
#define R_SPARC_LM22            36
#define R_SPARC_WDISP16	40
#define R_SPARC_WDISP19	41
#define R_SPARC_7	43
#define R_SPARC_5	44
#define R_SPARC_6	45
/* Bits present in AT_HWCAP, primarily for Sparc32.  */
#define HWCAP_SPARC_FLUSH       1    /* CPU supports flush instruction. */
#define HWCAP_SPARC_STBAR       2
#define HWCAP_SPARC_SWAP        4
#define HWCAP_SPARC_MULDIV      8
#define HWCAP_SPARC_V9	16
#define HWCAP_SPARC_ULTRA3	32
/*
 * 68k ELF relocation types
 */
#define R_68K_NONE	0
#define R_68K_32	1
#define R_68K_16	2
#define R_68K_8	3
#define R_68K_PC32	4
#define R_68K_PC16	5
#define R_68K_PC8	6
#define R_68K_GOT32	7
#define R_68K_GOT16	8
#define R_68K_GOT8	9
#define R_68K_GOT32O	10
#define R_68K_GOT16O	11
#define R_68K_GOT8O	12
#define R_68K_PLT32	13
#define R_68K_PLT16	14
#define R_68K_PLT8	15
#define R_68K_PLT32O	16
#define R_68K_PLT16O	17
#define R_68K_PLT8O	18
#define R_68K_COPY	19
#define R_68K_GLOB_DAT	20
#define R_68K_JMP_SLOT	21
#define R_68K_RELATIVE	22
/*
 * Alpha ELF relocation types
 */
#define R_ALPHA_NONE            0       /* No reloc */
#define R_ALPHA_REFLONG         1       /* Direct 32 bit */
#define R_ALPHA_REFQUAD         2       /* Direct 64 bit */
#define R_ALPHA_GPREL32         3       /* GP relative 32 bit */
#define R_ALPHA_LITERAL         4       /* GP relative 16 bit w/optimization */
#define R_ALPHA_LITUSE          5       /* Optimization hint for LITERAL */
#define R_ALPHA_GPDISP          6       /* Add displacement to GP */
#define R_ALPHA_BRADDR          7       /* PC+4 relative 23 bit shifted */
#define R_ALPHA_HINT            8       /* PC+4 relative 16 bit shifted */
#define R_ALPHA_SREL16          9       /* PC relative 16 bit */
#define R_ALPHA_SREL32          10      /* PC relative 32 bit */
#define R_ALPHA_SREL64          11      /* PC relative 64 bit */
#define R_ALPHA_GPRELHIGH       17      /* GP relative 32 bit, high 16 bits */
#define R_ALPHA_GPRELLOW        18      /* GP relative 32 bit, low 16 bits */
#define R_ALPHA_GPREL16         19      /* GP relative 16 bit */
#define R_ALPHA_COPY            24      /* Copy symbol at runtime */
#define R_ALPHA_GLOB_DAT        25      /* Create GOT entry */
#define R_ALPHA_JMP_SLOT        26      /* Create PLT entry */
#define R_ALPHA_RELATIVE        27      /* Adjust by program base */
#define R_ALPHA_BRSGP	28
#define R_ALPHA_TLSGD           29
#define R_ALPHA_TLS_LDM         30
#define R_ALPHA_DTPMOD64        31
#define R_ALPHA_GOTDTPREL       32
#define R_ALPHA_DTPREL64        33
#define R_ALPHA_DTPRELHI        34
#define R_ALPHA_DTPRELLO        35
#define R_ALPHA_DTPREL16        36
#define R_ALPHA_GOTTPREL        37
#define R_ALPHA_TPREL64         38
#define R_ALPHA_TPRELHI         39
#define R_ALPHA_TPRELLO         40
#define R_ALPHA_TPREL16         41
#define SHF_ALPHA_GPREL	0x10000000
/* PowerPC relocations defined by the ABIs */
#define R_PPC_NONE	0
#define R_PPC_ADDR32	1	/* 32bit absolute address */
#define R_PPC_ADDR24	2	/* 26bit address, 2 bits ignored.  */
#define R_PPC_ADDR16	3	/* 16bit absolute address */
#define R_PPC_ADDR16_LO	4	/* lower 16bit of absolute address */
#define R_PPC_ADDR16_HI	5	/* high 16bit of absolute address */
#define R_PPC_ADDR16_HA	6	/* adjusted high 16bit */
#define R_PPC_ADDR14	7	/* 16bit address, 2 bits ignored */
#define R_PPC_ADDR14_BRTAKEN	8
#define R_PPC_ADDR14_BRNTAKEN	9
#define R_PPC_REL24	10	/* PC relative 26 bit */
#define R_PPC_REL14	11	/* PC relative 16 bit */
#define R_PPC_REL14_BRTAKEN	12
#define R_PPC_REL14_BRNTAKEN	13
#define R_PPC_GOT16	14
#define R_PPC_GOT16_LO	15
#define R_PPC_GOT16_HI	16
#define R_PPC_GOT16_HA	17
#define R_PPC_PLTREL24	18
#define R_PPC_COPY	19
#define R_PPC_GLOB_DAT	20
#define R_PPC_JMP_SLOT	21
#define R_PPC_RELATIVE	22
#define R_PPC_LOCAL24PC	23
#define R_PPC_UADDR32	24
#define R_PPC_UADDR16	25
#define R_PPC_REL32	26
#define R_PPC_PLT32	27
#define R_PPC_PLTREL32	28
#define R_PPC_PLT16_LO	29
#define R_PPC_PLT16_HI	30
#define R_PPC_PLT16_HA	31
#define R_PPC_SDAREL16	32
#define R_PPC_SECTOFF	33
#define R_PPC_SECTOFF_LO	34
#define R_PPC_SECTOFF_HI	35
#define R_PPC_SECTOFF_HA	36
/* Keep this the last entry.  */
#define R_PPC_NUM	37
/* ARM specific declarations */
/* Processor specific flags for the ELF header e_flags field.  */
#define EF_ARM_RELEXEC     0x01
#define EF_ARM_HASENTRY    0x02
#define EF_ARM_INTERWORK   0x04
#define EF_ARM_APCS_26     0x08
#define EF_ARM_APCS_FLOAT  0x10
#define EF_ARM_PIC         0x20
#define EF_ALIGN8          0x40	/* 8-bit structure alignment is in use */
#define EF_NEW_ABI         0x80
#define EF_OLD_ABI         0x100
/* Additional symbol types for Thumb */
#define STT_ARM_TFUNC      0xd
/* ARM-specific values for sh_flags */
#define SHF_ARM_ENTRYSECT  0x10000000   /* Section contains an entry point */
#define SHF_ARM_COMDEF     0x80000000   /* Section may be multiply defined
   in the input to a link step */
/* ARM-specific program header flags */
#define PF_ARM_SB          0x10000000   /* Segment contains the location
   addressed by the static base */
/* ARM relocs.  */
#define R_ARM_NONE	0	/* No reloc */
#define R_ARM_PC24	1	/* PC relative 26 bit branch */
#define R_ARM_ABS32	2	/* Direct 32 bit  */
#define R_ARM_REL32	3	/* PC relative 32 bit */
#define R_ARM_PC13	4
#define R_ARM_ABS16	5	/* Direct 16 bit */
#define R_ARM_ABS12	6	/* Direct 12 bit */
#define R_ARM_THM_ABS5	7
#define R_ARM_ABS8	8	/* Direct 8 bit */
#define R_ARM_SBREL32	9
#define R_ARM_THM_PC22	10
#define R_ARM_THM_PC8	11
#define R_ARM_AMP_VCALL9	12
#define R_ARM_SWI24	13
#define R_ARM_THM_SWI8	14
#define R_ARM_XPC25	15
#define R_ARM_THM_XPC22	16
#define R_ARM_COPY	20	/* Copy symbol at runtime */
#define R_ARM_GLOB_DAT	21	/* Create GOT entry */
#define R_ARM_JUMP_SLOT	22	/* Create PLT entry */
#define R_ARM_RELATIVE	23	/* Adjust by program base */
#define R_ARM_GOTOFF	24	/* 32 bit offset to GOT */
#define R_ARM_GOTPC	25	/* 32 bit PC relative offset to GOT */
#define R_ARM_GOT32	26	/* 32 bit GOT entry */
#define R_ARM_PLT32	27	/* 32 bit PLT address */
#define R_ARM_CALL              28
#define R_ARM_JUMP24            29
#define R_ARM_GNU_VTENTRY	100
#define R_ARM_GNU_VTINHERIT	101
#define R_ARM_THM_PC11	102	/* thumb unconditional branch */
#define R_ARM_THM_PC9	103	/* thumb conditional branch */
#define R_ARM_RXPC25	249
#define R_ARM_RSBREL32	250
#define R_ARM_THM_RPC22	251
#define R_ARM_RREL32	252
#define R_ARM_RABS22	253
#define R_ARM_RPC24	254
#define R_ARM_RBASE	255
/* Keep this the last entry.  */
#define R_ARM_NUM	256
/* s390 relocations defined by the ABIs */
#define R_390_NONE	0	/* No reloc.  */
#define R_390_8	1	/* Direct 8 bit.  */
#define R_390_12	2	/* Direct 12 bit.  */
#define R_390_16	3	/* Direct 16 bit.  */
#define R_390_32	4	/* Direct 32 bit.  */
#define R_390_PC32	5	/* PC relative 32 bit.	*/
#define R_390_GOT12	6	/* 12 bit GOT offset.  */
#define R_390_GOT32	7	/* 32 bit GOT offset.  */
#define R_390_PLT32	8	/* 32 bit PC relative PLT address.  */
#define R_390_COPY	9	/* Copy symbol at runtime.  */
#define R_390_GLOB_DAT	10	/* Create GOT entry.  */
#define R_390_JMP_SLOT	11	/* Create PLT entry.  */
#define R_390_RELATIVE	12	/* Adjust by program base.  */
#define R_390_GOTOFF32	13	/* 32 bit offset to GOT.	 */
#define R_390_GOTPC	14	/* 32 bit PC rel. offset to GOT.  */
#define R_390_GOT16	15	/* 16 bit GOT offset.  */
#define R_390_PC16	16	/* PC relative 16 bit.	*/
#define R_390_PC16DBL	17	/* PC relative 16 bit shifted by 1.  */
#define R_390_PLT16DBL	18	/* 16 bit PC rel. PLT shifted by 1.  */
#define R_390_PC32DBL	19	/* PC relative 32 bit shifted by 1.  */
#define R_390_PLT32DBL	20	/* 32 bit PC rel. PLT shifted by 1.  */
#define R_390_GOTPCDBL	21	/* 32 bit PC rel. GOT shifted by 1.  */
#define R_390_64	22	/* Direct 64 bit.  */
#define R_390_PC64	23	/* PC relative 64 bit.	*/
#define R_390_GOT64	24	/* 64 bit GOT offset.  */
#define R_390_PLT64	25	/* 64 bit PC relative PLT address.  */
#define R_390_GOTENT	26	/* 32 bit PC rel. to GOT entry >> 1. */
#define R_390_GOTOFF16	27	/* 16 bit offset to GOT. */
#define R_390_GOTOFF64	28	/* 64 bit offset to GOT. */
#define R_390_GOTPLT12	29	/* 12 bit offset to jump slot.	*/
#define R_390_GOTPLT16	30	/* 16 bit offset to jump slot.	*/
#define R_390_GOTPLT32	31	/* 32 bit offset to jump slot.	*/
#define R_390_GOTPLT64	32	/* 64 bit offset to jump slot.	*/
#define R_390_GOTPLTENT	33	/* 32 bit rel. offset to jump slot.  */
#define R_390_PLTOFF16	34	/* 16 bit offset from GOT to PLT. */
#define R_390_PLTOFF32	35	/* 32 bit offset from GOT to PLT. */
#define R_390_PLTOFF64	36	/* 16 bit offset from GOT to PLT. */
#define R_390_TLS_LOAD	37	/* Tag for load insn in TLS code. */
#define R_390_TLS_GDCALL	38	/* Tag for function call in general
                                           dynamic TLS code.  */
#define R_390_TLS_LDCALL	39	/* Tag for function call in local
                                           dynamic TLS code.  */
#define R_390_TLS_GD32	40	/* Direct 32 bit for general dynamic
                                           thread local data.  */
#define R_390_TLS_GD64	41	/* Direct 64 bit for general dynamic
                                           thread local data.  */
#define R_390_TLS_GOTIE12	42	/* 12 bit GOT offset for static TLS
                                           block offset.  */
#define R_390_TLS_GOTIE32	43	/* 32 bit GOT offset for static TLS
                                           block offset.  */
#define R_390_TLS_GOTIE64	44	/* 64 bit GOT offset for static TLS
                                           block offset.  */
#define R_390_TLS_LDM32	45	/* Direct 32 bit for local dynamic
                                           thread local data in LD code.  */
#define R_390_TLS_LDM64	46	/* Direct 64 bit for local dynamic
                                           thread local data in LD code.  */
#define R_390_TLS_IE32	47	/* 32 bit address of GOT entry for
                                           negated static TLS block offset.  */
#define R_390_TLS_IE64	48	/* 64 bit address of GOT entry for
                                           negated static TLS block offset.  */
#define R_390_TLS_IEENT	49	/* 32 bit rel. offset to GOT entry for
                                           negated static TLS block offset.  */
#define R_390_TLS_LE32	50	/* 32 bit negated offset relative to
                                           static TLS block.  */
#define R_390_TLS_LE64	51	/* 64 bit negated offset relative to
                                           static TLS block.  */
#define R_390_TLS_LDO32	52	/* 32 bit offset relative to TLS
                                           block.  */
#define R_390_TLS_LDO64	53	/* 64 bit offset relative to TLS
                                           block.  */
#define R_390_TLS_DTPMOD	54	/* ID of module containing symbol.  */
#define R_390_TLS_DTPOFF	55	/* Offset in TLS block.  */
#define R_390_TLS_TPOFF	56	/* Negate offset in static TLS
                                           block.  */
/* Keep this the last entry.  */
#define R_390_NUM	57
/* x86-64 relocation types */
#define R_X86_64_NONE	0	/* No reloc */
#define R_X86_64_64	1	/* Direct 64 bit  */
#define R_X86_64_PC32	2	/* PC relative 32 bit signed */
#define R_X86_64_GOT32	3	/* 32 bit GOT entry */
#define R_X86_64_PLT32	4	/* 32 bit PLT address */
#define R_X86_64_COPY	5	/* Copy symbol at runtime */
#define R_X86_64_GLOB_DAT	6	/* Create GOT entry */
#define R_X86_64_JUMP_SLOT	7	/* Create PLT entry */
#define R_X86_64_RELATIVE	8	/* Adjust by program base */
#define R_X86_64_GOTPCREL	9	/* 32 bit signed pc relative
   offset to GOT */
#define R_X86_64_32	10	/* Direct 32 bit zero extended */
#define R_X86_64_32S	11	/* Direct 32 bit sign extended */
#define R_X86_64_16	12	/* Direct 16 bit zero extended */
#define R_X86_64_PC16	13	/* 16 bit sign extended pc relative */
#define R_X86_64_8	14	/* Direct 8 bit sign extended  */
#define R_X86_64_PC8	15	/* 8 bit sign extended pc relative */
#define R_X86_64_NUM	16
/* Legal values for e_flags field of Elf64_Ehdr.  */
#define EF_ALPHA_32BIT	1	/* All addresses are below 2GB */
/* HPPA specific definitions.  */
/* Legal values for e_flags field of Elf32_Ehdr.  */
#define EF_PARISC_TRAPNIL	0x00010000 /* Trap nil pointer dereference.  */
#define EF_PARISC_EXT	0x00020000 /* Program uses arch. extensions. */
#define EF_PARISC_LSB	0x00040000 /* Program expects little endian. */
#define EF_PARISC_WIDE	0x00080000 /* Program expects wide mode.  */
#define EF_PARISC_NO_KABP	0x00100000 /* No kernel assisted branch
      prediction.  */
#define EF_PARISC_LAZYSWAP	0x00400000 /* Allow lazy swapping.  */
#define EF_PARISC_ARCH	0x0000ffff /* Architecture version.  */
/* Defined values for `e_flags & EF_PARISC_ARCH' are:  */
#define EFA_PARISC_1_0	    0x020b /* PA-RISC 1.0 big-endian.  */
#define EFA_PARISC_1_1	    0x0210 /* PA-RISC 1.1 big-endian.  */
#define EFA_PARISC_2_0	    0x0214 /* PA-RISC 2.0 big-endian.  */
/* Additional section indeces.  */
#define SHN_PARISC_ANSI_COMMON	0xff00	   /* Section for tenatively declared
      symbols in ANSI C.  */
#define SHN_PARISC_HUGE_COMMON	0xff01	   /* Common blocks in huge model.  */
/* Legal values for sh_type field of Elf32_Shdr.  */
#define SHT_PARISC_EXT	0x70000000 /* Contains product specific ext. */
#define SHT_PARISC_UNWIND	0x70000001 /* Unwind information.  */
#define SHT_PARISC_DOC	0x70000002 /* Debug info for optimized code. */
/* Legal values for sh_flags field of Elf32_Shdr.  */
#define SHF_PARISC_SHORT	0x20000000 /* Section with short addressing. */
#define SHF_PARISC_HUGE	0x40000000 /* Section far from gp.  */
#define SHF_PARISC_SBP	0x80000000 /* Static branch prediction code. */
/* Legal values for ST_TYPE subfield of st_info (symbol type).  */
#define STT_PARISC_MILLICODE	13	/* Millicode function entry point.  */
#define STT_HP_OPAQUE	(STT_LOOS + 0x1)
#define STT_HP_STUB	(STT_LOOS + 0x2)
/* HPPA relocs.  */
#define R_PARISC_NONE	0	/* No reloc.  */
#define R_PARISC_DIR32	1	/* Direct 32-bit reference.  */
#define R_PARISC_DIR21L	2	/* Left 21 bits of eff. address.  */
#define R_PARISC_DIR17R	3	/* Right 17 bits of eff. address.  */
#define R_PARISC_DIR17F	4	/* 17 bits of eff. address.  */
#define R_PARISC_DIR14R	6	/* Right 14 bits of eff. address.  */
#define R_PARISC_PCREL32	9	/* 32-bit rel. address.  */
#define R_PARISC_PCREL21L	10	/* Left 21 bits of rel. address.  */
#define R_PARISC_PCREL17R	11	/* Right 17 bits of rel. address.  */
#define R_PARISC_PCREL17F	12	/* 17 bits of rel. address.  */
#define R_PARISC_PCREL14R	14	/* Right 14 bits of rel. address.  */
#define R_PARISC_DPREL21L	18	/* Left 21 bits of rel. address.  */
#define R_PARISC_DPREL14R	22	/* Right 14 bits of rel. address.  */
#define R_PARISC_GPREL21L	26	/* GP-relative, left 21 bits.  */
#define R_PARISC_GPREL14R	30	/* GP-relative, right 14 bits.  */
#define R_PARISC_LTOFF21L	34	/* LT-relative, left 21 bits.  */
#define R_PARISC_LTOFF14R	38	/* LT-relative, right 14 bits.  */
#define R_PARISC_SECREL32	41	/* 32 bits section rel. address.  */
#define R_PARISC_SEGBASE	48	/* No relocation, set segment base.  */
#define R_PARISC_SEGREL32	49	/* 32 bits segment rel. address.  */
#define R_PARISC_PLTOFF21L	50	/* PLT rel. address, left 21 bits.  */
#define R_PARISC_PLTOFF14R	54	/* PLT rel. address, right 14 bits.  */
#define R_PARISC_LTOFF_FPTR32	57	/* 32 bits LT-rel. function pointer. */
#define R_PARISC_LTOFF_FPTR21L	58	/* LT-rel. fct ptr, left 21 bits. */
#define R_PARISC_LTOFF_FPTR14R	62	/* LT-rel. fct ptr, right 14 bits. */
#define R_PARISC_FPTR64	64	/* 64 bits function address.  */
#define R_PARISC_PLABEL32	65	/* 32 bits function address.  */
#define R_PARISC_PCREL64	72	/* 64 bits PC-rel. address.  */
#define R_PARISC_PCREL22F	74	/* 22 bits PC-rel. address.  */
#define R_PARISC_PCREL14WR	75	/* PC-rel. address, right 14 bits.  */
#define R_PARISC_PCREL14DR	76	/* PC rel. address, right 14 bits.  */
#define R_PARISC_PCREL16F	77	/* 16 bits PC-rel. address.  */
#define R_PARISC_PCREL16WF	78	/* 16 bits PC-rel. address.  */
#define R_PARISC_PCREL16DF	79	/* 16 bits PC-rel. address.  */
#define R_PARISC_DIR64	80	/* 64 bits of eff. address.  */
#define R_PARISC_DIR14WR	83	/* 14 bits of eff. address.  */
#define R_PARISC_DIR14DR	84	/* 14 bits of eff. address.  */
#define R_PARISC_DIR16F	85	/* 16 bits of eff. address.  */
#define R_PARISC_DIR16WF	86	/* 16 bits of eff. address.  */
#define R_PARISC_DIR16DF	87	/* 16 bits of eff. address.  */
#define R_PARISC_GPREL64	88	/* 64 bits of GP-rel. address.  */
#define R_PARISC_GPREL14WR	91	/* GP-rel. address, right 14 bits.  */
#define R_PARISC_GPREL14DR	92	/* GP-rel. address, right 14 bits.  */
#define R_PARISC_GPREL16F	93	/* 16 bits GP-rel. address.  */
#define R_PARISC_GPREL16WF	94	/* 16 bits GP-rel. address.  */
#define R_PARISC_GPREL16DF	95	/* 16 bits GP-rel. address.  */
#define R_PARISC_LTOFF64	96	/* 64 bits LT-rel. address.  */
#define R_PARISC_LTOFF14WR	99	/* LT-rel. address, right 14 bits.  */
#define R_PARISC_LTOFF14DR	100	/* LT-rel. address, right 14 bits.  */
#define R_PARISC_LTOFF16F	101	/* 16 bits LT-rel. address.  */
#define R_PARISC_LTOFF16WF	102	/* 16 bits LT-rel. address.  */
#define R_PARISC_LTOFF16DF	103	/* 16 bits LT-rel. address.  */
#define R_PARISC_SECREL64	104	/* 64 bits section rel. address.  */
#define R_PARISC_SEGREL64	112	/* 64 bits segment rel. address.  */
#define R_PARISC_PLTOFF14WR	115	/* PLT-rel. address, right 14 bits.  */
#define R_PARISC_PLTOFF14DR	116	/* PLT-rel. address, right 14 bits.  */
#define R_PARISC_PLTOFF16F	117	/* 16 bits LT-rel. address.  */
#define R_PARISC_PLTOFF16WF	118	/* 16 bits PLT-rel. address.  */
#define R_PARISC_PLTOFF16DF	119	/* 16 bits PLT-rel. address.  */
#define R_PARISC_LTOFF_FPTR64	120	/* 64 bits LT-rel. function ptr.  */
#define R_PARISC_LTOFF_FPTR14WR	123	/* LT-rel. fct. ptr., right 14 bits. */
#define R_PARISC_LTOFF_FPTR14DR	124	/* LT-rel. fct. ptr., right 14 bits. */
#define R_PARISC_LTOFF_FPTR16F	125	/* 16 bits LT-rel. function ptr.  */
#define R_PARISC_LTOFF_FPTR16WF	126	/* 16 bits LT-rel. function ptr.  */
#define R_PARISC_LTOFF_FPTR16DF	127	/* 16 bits LT-rel. function ptr.  */
#define R_PARISC_LORESERVE	128
#define R_PARISC_COPY	128	/* Copy relocation.  */
#define R_PARISC_IPLT	129	/* Dynamic reloc, imported PLT */
#define R_PARISC_EPLT	130	/* Dynamic reloc, exported PLT */
#define R_PARISC_TPREL32	153	/* 32 bits TP-rel. address.  */
#define R_PARISC_TPREL21L	154	/* TP-rel. address, left 21 bits.  */
#define R_PARISC_TPREL14R	158	/* TP-rel. address, right 14 bits.  */
#define R_PARISC_LTOFF_TP21L	162	/* LT-TP-rel. address, left 21 bits. */
#define R_PARISC_LTOFF_TP14R	166	/* LT-TP-rel. address, right 14 bits.*/
#define R_PARISC_LTOFF_TP14F	167	/* 14 bits LT-TP-rel. address.  */
#define R_PARISC_TPREL64	216	/* 64 bits TP-rel. address.  */
#define R_PARISC_TPREL14WR	219	/* TP-rel. address, right 14 bits.  */
#define R_PARISC_TPREL14DR	220	/* TP-rel. address, right 14 bits.  */
#define R_PARISC_TPREL16F	221	/* 16 bits TP-rel. address.  */
#define R_PARISC_TPREL16WF	222	/* 16 bits TP-rel. address.  */
#define R_PARISC_TPREL16DF	223	/* 16 bits TP-rel. address.  */
#define R_PARISC_LTOFF_TP64	224	/* 64 bits LT-TP-rel. address.  */
#define R_PARISC_LTOFF_TP14WR	227	/* LT-TP-rel. address, right 14 bits.*/
#define R_PARISC_LTOFF_TP14DR	228	/* LT-TP-rel. address, right 14 bits.*/
#define R_PARISC_LTOFF_TP16F	229	/* 16 bits LT-TP-rel. address.  */
#define R_PARISC_LTOFF_TP16WF	230	/* 16 bits LT-TP-rel. address.  */
#define R_PARISC_LTOFF_TP16DF	231	/* 16 bits LT-TP-rel. address.  */
#define R_PARISC_HIRESERVE	255
/* Legal values for p_type field of Elf32_Phdr/Elf64_Phdr.  */
#define PT_HP_TLS	(PT_LOOS + 0x0)
#define PT_HP_CORE_NONE	(PT_LOOS + 0x1)
#define PT_HP_CORE_VERSION	(PT_LOOS + 0x2)
#define PT_HP_CORE_KERNEL	(PT_LOOS + 0x3)
#define PT_HP_CORE_COMM	(PT_LOOS + 0x4)
#define PT_HP_CORE_PROC	(PT_LOOS + 0x5)
#define PT_HP_CORE_LOADABLE	(PT_LOOS + 0x6)
#define PT_HP_CORE_STACK	(PT_LOOS + 0x7)
#define PT_HP_CORE_SHM	(PT_LOOS + 0x8)
#define PT_HP_CORE_MMF	(PT_LOOS + 0x9)
#define PT_HP_PARALLEL	(PT_LOOS + 0x10)
#define PT_HP_FASTBIND	(PT_LOOS + 0x11)
#define PT_HP_OPT_ANNOT	(PT_LOOS + 0x12)
#define PT_HP_HSL_ANNOT	(PT_LOOS + 0x13)
#define PT_HP_STACK	(PT_LOOS + 0x14)
#define PT_PARISC_ARCHEXT	0x70000000
#define PT_PARISC_UNWIND	0x70000001
/* Legal values for p_flags field of Elf32_Phdr/Elf64_Phdr.  */
#define PF_PARISC_SBP	0x08000000
#define PF_HP_PAGE_SIZE	0x00100000
#define PF_HP_FAR_SHARED	0x00200000
#define PF_HP_NEAR_SHARED	0x00400000
#define PF_HP_CODE	0x01000000
#define PF_HP_MODIFY	0x02000000
#define PF_HP_LAZYSWAP	0x04000000
#define PF_HP_SBP	0x08000000
/* IA-64 specific declarations.  */
/* Processor specific flags for the Ehdr e_flags field.  */
#define EF_IA_64_MASKOS	0x0000000f	/* os-specific flags */
#define EF_IA_64_ABI64	0x00000010	/* 64-bit ABI */
#define EF_IA_64_ARCH	0xff000000	/* arch. version mask */
/* Processor specific values for the Phdr p_type field.  */
#define PT_IA_64_ARCHEXT	(PT_LOPROC + 0)	/* arch extension bits */
#define PT_IA_64_UNWIND	(PT_LOPROC + 1)	/* ia64 unwind bits */
/* Processor specific flags for the Phdr p_flags field.  */
#define PF_IA_64_NORECOV	0x80000000	/* spec insns w/o recovery */
/* Processor specific values for the Shdr sh_type field.  */
#define SHT_IA_64_EXT	(SHT_LOPROC + 0) /* extension bits */
#define SHT_IA_64_UNWIND	(SHT_LOPROC + 1) /* unwind bits */
/* Processor specific flags for the Shdr sh_flags field.  */
#define SHF_IA_64_SHORT	0x10000000	/* section near gp */
#define SHF_IA_64_NORECOV	0x20000000	/* spec insns w/o recovery */
/* Processor specific values for the Dyn d_tag field.  */
#define DT_IA_64_PLT_RESERVE	(DT_LOPROC + 0)
#define DT_IA_64_NUM	1
/* IA-64 relocations.  */
#define R_IA64_NONE	0x00	/* none */
#define R_IA64_IMM14	0x21	/* symbol + addend, add imm14 */
#define R_IA64_IMM22	0x22	/* symbol + addend, add imm22 */
#define R_IA64_IMM64	0x23	/* symbol + addend, mov imm64 */
#define R_IA64_DIR32MSB	0x24	/* symbol + addend, data4 MSB */
#define R_IA64_DIR32LSB	0x25	/* symbol + addend, data4 LSB */
#define R_IA64_DIR64MSB	0x26	/* symbol + addend, data8 MSB */
#define R_IA64_DIR64LSB	0x27	/* symbol + addend, data8 LSB */
#define R_IA64_GPREL22	0x2a	/* @gprel(sym + add), add imm22 */
#define R_IA64_GPREL64I	0x2b	/* @gprel(sym + add), mov imm64 */
#define R_IA64_GPREL32MSB	0x2c	/* @gprel(sym + add), data4 MSB */
#define R_IA64_GPREL32LSB	0x2d	/* @gprel(sym + add), data4 LSB */
#define R_IA64_GPREL64MSB	0x2e	/* @gprel(sym + add), data8 MSB */
#define R_IA64_GPREL64LSB	0x2f	/* @gprel(sym + add), data8 LSB */
#define R_IA64_LTOFF22	0x32	/* @ltoff(sym + add), add imm22 */
#define R_IA64_LTOFF64I	0x33	/* @ltoff(sym + add), mov imm64 */
#define R_IA64_PLTOFF22	0x3a	/* @pltoff(sym + add), add imm22 */
#define R_IA64_PLTOFF64I	0x3b	/* @pltoff(sym + add), mov imm64 */
#define R_IA64_PLTOFF64MSB	0x3e	/* @pltoff(sym + add), data8 MSB */
#define R_IA64_PLTOFF64LSB	0x3f	/* @pltoff(sym + add), data8 LSB */
#define R_IA64_FPTR64I	0x43	/* @fptr(sym + add), mov imm64 */
#define R_IA64_FPTR32MSB	0x44	/* @fptr(sym + add), data4 MSB */
#define R_IA64_FPTR32LSB	0x45	/* @fptr(sym + add), data4 LSB */
#define R_IA64_FPTR64MSB	0x46	/* @fptr(sym + add), data8 MSB */
#define R_IA64_FPTR64LSB	0x47	/* @fptr(sym + add), data8 LSB */
#define R_IA64_PCREL60B	0x48	/* @pcrel(sym + add), brl */
#define R_IA64_PCREL21B	0x49	/* @pcrel(sym + add), ptb, call */
#define R_IA64_PCREL21M	0x4a	/* @pcrel(sym + add), chk.s */
#define R_IA64_PCREL21F	0x4b	/* @pcrel(sym + add), fchkf */
#define R_IA64_PCREL32MSB	0x4c	/* @pcrel(sym + add), data4 MSB */
#define R_IA64_PCREL32LSB	0x4d	/* @pcrel(sym + add), data4 LSB */
#define R_IA64_PCREL64MSB	0x4e	/* @pcrel(sym + add), data8 MSB */
#define R_IA64_PCREL64LSB	0x4f	/* @pcrel(sym + add), data8 LSB */
#define R_IA64_LTOFF_FPTR22	0x52	/* @ltoff(@fptr(s+a)), imm22 */
#define R_IA64_LTOFF_FPTR64I	0x53	/* @ltoff(@fptr(s+a)), imm64 */
#define R_IA64_LTOFF_FPTR32MSB	0x54	/* @ltoff(@fptr(s+a)), data4 MSB */
#define R_IA64_LTOFF_FPTR32LSB	0x55	/* @ltoff(@fptr(s+a)), data4 LSB */
#define R_IA64_LTOFF_FPTR64MSB	0x56	/* @ltoff(@fptr(s+a)), data8 MSB */
#define R_IA64_LTOFF_FPTR64LSB	0x57	/* @ltoff(@fptr(s+a)), data8 LSB */
#define R_IA64_SEGREL32MSB	0x5c	/* @segrel(sym + add), data4 MSB */
#define R_IA64_SEGREL32LSB	0x5d	/* @segrel(sym + add), data4 LSB */
#define R_IA64_SEGREL64MSB	0x5e	/* @segrel(sym + add), data8 MSB */
#define R_IA64_SEGREL64LSB	0x5f	/* @segrel(sym + add), data8 LSB */
#define R_IA64_SECREL32MSB	0x64	/* @secrel(sym + add), data4 MSB */
#define R_IA64_SECREL32LSB	0x65	/* @secrel(sym + add), data4 LSB */
#define R_IA64_SECREL64MSB	0x66	/* @secrel(sym + add), data8 MSB */
#define R_IA64_SECREL64LSB	0x67	/* @secrel(sym + add), data8 LSB */
#define R_IA64_REL32MSB	0x6c	/* data 4 + REL */
#define R_IA64_REL32LSB	0x6d	/* data 4 + REL */
#define R_IA64_REL64MSB	0x6e	/* data 8 + REL */
#define R_IA64_REL64LSB	0x6f	/* data 8 + REL */
#define R_IA64_LTV32MSB	0x74	/* symbol + addend, data4 MSB */
#define R_IA64_LTV32LSB	0x75	/* symbol + addend, data4 LSB */
#define R_IA64_LTV64MSB	0x76	/* symbol + addend, data8 MSB */
#define R_IA64_LTV64LSB	0x77	/* symbol + addend, data8 LSB */
#define R_IA64_PCREL21BI	0x79	/* @pcrel(sym + add), 21bit inst */
#define R_IA64_PCREL22	0x7a	/* @pcrel(sym + add), 22bit inst */
#define R_IA64_PCREL64I	0x7b	/* @pcrel(sym + add), 64bit inst */
#define R_IA64_IPLTMSB	0x80	/* dynamic reloc, imported PLT, MSB */
#define R_IA64_IPLTLSB	0x81	/* dynamic reloc, imported PLT, LSB */
#define R_IA64_COPY	0x84	/* copy relocation */
#define R_IA64_SUB	0x85	/* Addend and symbol difference */
#define R_IA64_LTOFF22X	0x86	/* LTOFF22, relaxable.  */
#define R_IA64_LDXMOV	0x87	/* Use of LTOFF22X.  */
#define R_IA64_TPREL14	0x91	/* @tprel(sym + add), imm14 */
#define R_IA64_TPREL22	0x92	/* @tprel(sym + add), imm22 */
#define R_IA64_TPREL64I	0x93	/* @tprel(sym + add), imm64 */
#define R_IA64_TPREL64MSB	0x96	/* @tprel(sym + add), data8 MSB */
#define R_IA64_TPREL64LSB	0x97	/* @tprel(sym + add), data8 LSB */
#define R_IA64_LTOFF_TPREL22	0x9a	/* @ltoff(@tprel(s+a)), imm2 */
#define R_IA64_DTPMOD64MSB	0xa6	/* @dtpmod(sym + add), data8 MSB */
#define R_IA64_DTPMOD64LSB	0xa7	/* @dtpmod(sym + add), data8 LSB */
#define R_IA64_LTOFF_DTPMOD22	0xaa	/* @ltoff(@dtpmod(sym + add)), imm22 */
#define R_IA64_DTPREL14	0xb1	/* @dtprel(sym + add), imm14 */
#define R_IA64_DTPREL22	0xb2	/* @dtprel(sym + add), imm22 */
#define R_IA64_DTPREL64I	0xb3	/* @dtprel(sym + add), imm64 */
#define R_IA64_DTPREL32MSB	0xb4	/* @dtprel(sym + add), data4 MSB */
#define R_IA64_DTPREL32LSB	0xb5	/* @dtprel(sym + add), data4 LSB */
#define R_IA64_DTPREL64MSB	0xb6	/* @dtprel(sym + add), data8 MSB */
#define R_IA64_DTPREL64LSB	0xb7	/* @dtprel(sym + add), data8 LSB */
#define R_IA64_LTOFF_DTPREL22	0xba	/* @ltoff(@dtprel(s+a)), imm22 */

typedef struct elf32_rel {
  Elf32_Addr	r_offset;
  Elf32_Word	r_info;
} Elf32_Rel;
typedef struct elf64_rel {
  Elf64_Addr r_offset;	/* Location at which to apply the action */
  Elf64_Xword r_info;	/* index and type of relocation */
} Elf64_Rel;

typedef struct elf32_rela{
  Elf32_Addr	r_offset;
  Elf32_Word	r_info;
  Elf32_Sword	r_addend;
} Elf32_Rela;
typedef struct elf64_rela {
  Elf64_Addr r_offset;	/* Location at which to apply the action */
  Elf64_Xword r_info;	/* index and type of relocation */
  Elf64_Sxword r_addend;	/* Constant addend used to compute value */
} Elf64_Rela;

typedef struct elf32_sym{
  Elf32_Word	st_name;
  Elf32_Addr	st_value;
  Elf32_Word	st_size;
  unsigned char	st_info;
  unsigned char	st_other;
  Elf32_Half	st_shndx;
} Elf32_Sym;
typedef struct elf64_sym {
  Elf64_Word st_name;	/* Symbol name, index in string tbl */
  unsigned char	st_info;	/* Type and binding attributes */
  unsigned char	st_other;	/* No defined meaning, 0 */
  Elf64_Half st_shndx;	/* Associated section index */
  Elf64_Addr st_value;	/* Value of the symbol */
  Elf64_Xword st_size;	/* Associated symbol size */
} Elf64_Sym;

#define EI_NIDENT	16
typedef struct elf32_hdr{
  unsigned char	e_ident[EI_NIDENT];
  Elf32_Half	e_type;
  Elf32_Half	e_machine;
  Elf32_Word	e_version;
  Elf32_Addr	e_entry;  /* Entry point */
  Elf32_Off	e_phoff;
  Elf32_Off	e_shoff;
  Elf32_Word	e_flags;
  Elf32_Half	e_ehsize;
  Elf32_Half	e_phentsize;
  Elf32_Half	e_phnum;
  Elf32_Half	e_shentsize;
  Elf32_Half	e_shnum;
  Elf32_Half	e_shstrndx;
} Elf32_Ehdr;
typedef struct elf64_hdr {
  unsigned char	e_ident[16];	/* ELF "magic number" */
  Elf64_Half e_type;
  Elf64_Half e_machine;
  Elf64_Word e_version;
  Elf64_Addr e_entry;	/* Entry point virtual address */
  Elf64_Off e_phoff;	/* Program header table file offset */
  Elf64_Off e_shoff;	/* Section header table file offset */
  Elf64_Word e_flags;
  Elf64_Half e_ehsize;
  Elf64_Half e_phentsize;
  Elf64_Half e_phnum;
  Elf64_Half e_shentsize;
  Elf64_Half e_shnum;
  Elf64_Half e_shstrndx;
} Elf64_Ehdr;

/* These constants define the permissions on sections in the program
   header, p_flags. */
#define PF_R	0x4
#define PF_W	0x2
#define PF_X	0x1
typedef struct elf32_phdr{
  Elf32_Word	p_type;
  Elf32_Off		p_offset;
  Elf32_Addr	p_vaddr;
  Elf32_Addr	p_paddr;
  Elf32_Word	p_filesz;
  Elf32_Word	p_memsz;
  Elf32_Word	p_flags;
  Elf32_Word	p_align;
} Elf32_Phdr;
typedef struct elf64_phdr {
  Elf64_Word p_type;
  Elf64_Word p_flags;
  Elf64_Off p_offset;	/* Segment file offset */
  Elf64_Addr p_vaddr;	/* Segment virtual address */
  Elf64_Addr p_paddr;	/* Segment physical address */
  Elf64_Xword p_filesz;	/* Segment size in file */
  Elf64_Xword p_memsz;	/* Segment size in memory */
  Elf64_Xword p_align;	/* Segment alignment, file & memory */
} Elf64_Phdr;
/* sh_type */

#define SHT_NULL	0
#define SHT_PROGBITS	1
#define SHT_SYMTAB	2
#define SHT_STRTAB	3
#define SHT_RELA	4
#define SHT_HASH	5
#define SHT_DYNAMIC	6
#define SHT_NOTE	7
#define SHT_NOBITS	8
#define SHT_REL	9
#define SHT_SHLIB	10
#define SHT_DYNSYM	11
#define SHT_NUM	12
#define SHT_LOPROC	0x70000000
#define SHT_HIPROC	0x7fffffff
#define SHT_LOUSER	0x80000000
#define SHT_HIUSER	0xffffffff
#define SHT_MIPS_LIST	0x70000000
#define SHT_MIPS_CONFLICT	0x70000002
#define SHT_MIPS_GPTAB	0x70000003
#define SHT_MIPS_UCODE	0x70000004
/* sh_flags */
#define SHF_WRITE	0x1
#define SHF_ALLOC	0x2
#define SHF_EXECINSTR	0x4
#define SHF_MASKPROC	0xf0000000
#define SHF_MIPS_GPREL	0x10000000
/* special section indexes */
#define SHN_UNDEF	0
#define SHN_LORESERVE	0xff00
#define SHN_LOPROC	0xff00
#define SHN_HIPROC	0xff1f
#define SHN_ABS	0xfff1
#define SHN_COMMON	0xfff2
#define SHN_HIRESERVE	0xffff
#define SHN_MIPS_ACCOMON	0xff00
typedef struct elf32_shdr {
  Elf32_Word	sh_name;
  Elf32_Word	sh_type;
  Elf32_Word	sh_flags;
  Elf32_Addr	sh_addr;
  Elf32_Off	sh_offset;
  Elf32_Word	sh_size;
  Elf32_Word	sh_link;
  Elf32_Word	sh_info;
  Elf32_Word	sh_addralign;
  Elf32_Word	sh_entsize;
} Elf32_Shdr;
typedef struct elf64_shdr {
  Elf64_Word sh_name;	/* Section name, index in string tbl */
  Elf64_Word sh_type;	/* Type of section */
  Elf64_Xword sh_flags;	/* Miscellaneous section attributes */
  Elf64_Addr sh_addr;	/* Section virtual addr at execution */
  Elf64_Off sh_offset;	/* Section file offset */
  Elf64_Xword sh_size;	/* Size of section in bytes */
  Elf64_Word sh_link;	/* Index of another section */
  Elf64_Word sh_info;	/* Additional section information */
  Elf64_Xword sh_addralign;	/* Section alignment */
  Elf64_Xword sh_entsize;	/* Entry size if section holds table */
} Elf64_Shdr;

#define	EI_MAG0	0	/* e_ident[] indexes */
#define	EI_MAG1	1
#define	EI_MAG2	2
#define	EI_MAG3	3
#define	EI_CLASS	4
#define	EI_DATA	5
#define	EI_VERSION	6
#define	EI_PAD	7
#define	ELFMAG0	0x7f	/* EI_MAG */
#define	ELFMAG1	'E'
#define	ELFMAG2	'L'
#define	ELFMAG3	'F'
#define	ELFMAG	"177ELF"
#define	SELFMAG	4
#define	ELFCLASSNONE	0	/* EI_CLASS */
#define	ELFCLASS32	1
#define	ELFCLASS64	2
#define	ELFCLASSNUM	3
#define ELFDATANONE	0	/* e_ident[EI_DATA] */
#define ELFDATA2LSB	1
#define ELFDATA2MSB	2
#define EV_NONE	0	/* e_version, EI_VERSION */
#define EV_CURRENT	1
#define EV_NUM	2
/* Notes used in ET_CORE */
#define NT_PRSTATUS	1
#define NT_PRFPREG	2
#define NT_PRPSINFO	3
#define NT_TASKSTRUCT	4
#define NT_PRXFPREG     0x46e62b7f      /* copied from gdb5.1/include/elf/common.h */

/* Note header in a PT_NOTE section */
typedef struct elf32_note {
  Elf32_Word	n_namesz;	/* Name size */
  Elf32_Word	n_descsz;	/* Content size */
  Elf32_Word	n_type;	/* Content type */
} Elf32_Nhdr;
/* Note header in a PT_NOTE section */
typedef struct elf64_note {
  Elf64_Word n_namesz;	/* Name size */
  Elf64_Word n_descsz;	/* Content size */
  Elf64_Word n_type;	/* Content type */
} Elf64_Nhdr;

#if ELF_CLASS == ELFCLASS32
#define elfhdr	elf32_hdr
#define elf_phdr	elf32_phdr
#define elf_note	elf32_note
#define elf_shdr	elf32_shdr
#define elf_sym	elf32_sym
#define elf_addr_t	Elf32_Off
#ifdef ELF_USES_RELOCA
# define ELF_RELOC      Elf32_Rela
#else
# define ELF_RELOC      Elf32_Rel
#endif
#else
#define elfhdr	elf64_hdr
#define elf_phdr	elf64_phdr
#define elf_note	elf64_note
#define elf_shdr	elf64_shdr
#define elf_sym	elf64_sym
#define elf_addr_t	Elf64_Off
#ifdef ELF_USES_RELOCA
# define ELF_RELOC      Elf64_Rela
#else
# define ELF_RELOC      Elf64_Rel
#endif
#endif /* ELF_CLASS */
#ifndef ElfW
# if ELF_CLASS == ELFCLASS32
#  define ElfW(x)  Elf32_ ## x
#  define ELFW(x)  ELF32_ ## x
# else
#  define ElfW(x)  Elf64_ ## x
#  define ELFW(x)  ELF64_ ## x
# endif
#endif
#endif /* _QEMU_ELF_H */

头文件 fix.h 的代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "elf.h"

#define SHDRS 16
/*
.dynsym .dynstr .hash .rel.dyn .rel.plt
.plt .text .ARM.extab .ARM.exidx .fini_array 
.init_array .dynamic .got .data
*/
#define NONE 0
#define DYNSYM 1
#define DYNSTR 2
#define HASH 3
#define RELDYN 4
#define RELPLT 5
#define PLT 6
#define TEXT 7
#define ARMEXIDX 8
#define FINIARRAY 9
#define INITARRAY 10
#define DYNAMIC 11
#define GOT 12
#define DATA 13
#define BSS 14
#define STRTAB 15
//






猜你喜欢

转载自blog.csdn.net/qq1084283172/article/details/78818917
今日推荐