java锁理解初步和synchronized关键字

java中锁存在的意义

众所周知,在Java多线程编程中,一个非常重要的方面就是线程的同步问题,就是线程的先来后到的问题。从而保证线程执行的顺序。

我们来举一个Dirty的例子:某餐厅的卫生间很小,几乎只能容纳一个人如厕。为了保证不受干扰,如厕的人进入卫生间,就要锁上房门。我们可以把卫生间想象成是共享的资源,房门就是一把资源锁,而众多需要如厕的人可以被视作线程。假如卫生间(共享资源)当前有人(线程)占用,那么其他人(线程)必须等待,直到这个人(线程)如厕完毕,打开房门(锁)走出来为止。这就好比多个线程共享一个资源的时候,是一定要分出先来后到的。
有人说:那如果我没有这道门(锁)会怎样呢?让两个人(线程)相互竞争,谁抢先了,谁就可以先干活,这样多好阿?但是我们知道:如果厕所没有门(锁)的话,如厕的人(线程)一起涌向卫生间(共享资源),那么必然会发生争执,正常的如厕步骤就会被打乱,很有可能会发生意想不到的结果,例如某些人可能只好被迫在不正确的地方施肥……
正是因为有这道门(锁),任何一个进入如厕的人(线程)都可以顺利的完成他们的如厕过程,而不会被干扰,甚至发生以外的结果。这就是说,如厕的时候要讲究先来后到。

下面是没有锁时人们如厕的情景代码:

public class ThreadTest {

    public static void main(String[] args) throws InterruptedException {
        /**
         * 只有一个卫生间
         */
        Toilet toilet = new Toilet();
        /**
         * 有5个人要上厕所
         */
        for(int i = 0; i < 5; i++){
            final int Index = i;
            new Thread(new Runnable() {
                @Override
                public void run() {
                    toilet.getIn(new People("people" + Index));
                }
            }).start();

        }
    }

}
/**
 * 厕所类
 *
 */
class Toilet{
    public void getIn(People people) {
        /**
         * people进入厕所
         */
        System.out.println(people.getName() + " 进入厕所");
        /**
         * people如厕
         */
        try {
            Thread.currentThread().sleep(100);
        } catch (InterruptedException e) {
            System.out.println("厕所炸了");
        }
        System.out.println(people.getName() + " 正在如厕");
        /**
         * people出来
         */
        System.out.println(people.getName() + " 退出厕所");
    }
}

/**
 * 人类
 */
class People{
    private String name;

    public People(String name) {
        this.name = name;
    }

    public String getName() {
        return name;
    }
}

执行的结果:

people4 进入厕所
people1 进入厕所
people0 进入厕所
people3 进入厕所
people2 进入厕所
people4 正在如厕
people4 退出厕所
people1 正在如厕
people1 退出厕所
people3 正在如厕
people2 正在如厕
people2 退出厕所
people0 正在如厕
people3 退出厕所
people0 退出厕所

我的天啊!5个人抢厕所就抢的这么惨不忍睹,人再多一点儿那真是无法想象。和谐社会必须上锁。

java中锁的概念
一般在java中所说的锁就是指的内置锁,每个java对象都可以作为一个实现同步的锁,虽然说在java中一切皆对象, 但是锁必须是引用类型的,基本数据类型则不可以
每一个引用类型的对象都可以隐式的扮演一个用于同步的锁的角色,执行线程进入synchronized块之前会自动获得锁,无论是通过正常语句退出还是执行过程中抛出了异常,线程都会在放弃对synchronized块的控制时自动释放锁。 获得锁的唯一途径就是进入这个内部锁保护的同步块或方法 。
正如意义中所说,对共享资源的访问必须是顺序的,也就是说当多个线程对共享资源访问的时候,只能有一个线程可以获得该共享资源的锁,当线程A尝试获取线程B的锁时,线程A必须等待或者阻塞,直到线程B释放该锁为止,否则线程A将一直等待下去,因此java内置锁也称作互斥锁,也即是说锁实际上是一种互斥机制。
根据使用方式的不同一般我们会将锁分为对象锁类锁,两个锁是有很大差别的,对象锁是作用在实例方法或者一个对象实例上面的,而类锁是作用在静态方法或者Class对象上面的。一个类可以有多个实例对象,因此一个类的对象锁可能会有多个,但是每个类只有一个Class对象,所以类锁只有一个。 类锁只是一个概念上的东西,并不是真实存在的,它只是用来帮助我们理解锁定的是实例方法还是静态方法区别的 。

让我们从JVM的角度来看看锁这个概念:

在Java程序运行时环境中,JVM需要对两类线程共享的数据进行协调:
1)保存在堆中的实例变量
2)保存在方法区中的类变量

这两类数据是被所有线程共享的。
(程序不需要协调保存在Java 栈当中的数据。因为这些数据是属于拥有该栈的线程所私有的。)
Java的内存模型

(stac)是JVM中一块可自由分配给对象的区域。当我们谈论垃圾回收(garbage collection)时,我们主要回收堆(heap)的空间。

方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做Non-Heap(非堆),目的应该是与Java堆区分开来。

:在Java中,JVM中的栈记录了线程的方法调用。每个线程拥有一个栈。在某个线程的运行过程中,如果有新的方法调用,那么该线程对应的栈就会增加一个存储单元,即帧(frame)。在frame中,保存有该方法调用的参数、局部变量和返回地址。

Java的普通对象存活在堆中。与栈不同,堆的空间不会随着方法调用结束而清空。因此,在某个方法中创建的对象,可以在方法调用结束之后,继续存在于堆中。这带来的一个问题是,如果我们不断的创建新的对象,内存空间将最终消耗殆尽。

在java虚拟机中,每个对象和类在逻辑上都是和一个监视器相关联的。对于对象来说,相关联的监视器保护对象的实例变量。对于类来说,监视器保护类的类变量。(如果一个对象没有实例变量,或者一个类没有变量,相关联的监视器就什么也不监视。) 为了实现监视器的排他性监视能力,java虚拟机为每一个对象和类都关联一个锁。代表任何时候只允许一个线程拥有的特权。线程访问实例变量或者类变量不需锁。但是如果线程获取了锁,那么在它释放这个锁之前,就没有其他线程可以获取同样数据的锁了。(锁住一个对象就是获取对象相关联的监视器)

在java程序中,只需要使用synchronized块或者synchronized方法就可以标志一个监视区域。当每次进入一个监视区域时,java 虚拟机都会自动锁上对象或者类。

synchronized关键字可以修饰代码块和方法。synchronized修饰不同的代码锁住的对象也是不同的。下面来一一探索一下他们之间的区别。

1 synchronized修饰方法和代码块:

public class ThreadTest {

    public void test1() {  
         synchronized(this) {  
              int i = 5;  
              while( i-- > 0) {  
                   System.out.println(Thread.currentThread().getName() + " : " + i);  
                   try {  
                        Thread.sleep(500);  
                   } catch (InterruptedException ie) {  
                   }  
              }  
         }  
    }
    public synchronized void test2() {  
         int i = 5;  
         while( i-- > 0) {  
              System.out.println(Thread.currentThread().getName() + " : " + i);  
              try {  
                   Thread.sleep(500);  
              } catch (InterruptedException ie) {  
              }  
         }  
    }
    public static void main(String[] args) 
    {  
         final ThreadTest myt2 = new ThreadTest();  
         Thread test1 = new Thread(  new Runnable() {
             public void run() {
                 myt2.test1();  
             }  
         }, "test1");
         Thread test2 = new Thread(  new Runnable() {
             public void run() {
                 myt2.test2();
             }
         }, "test2");
         test1.start();
         test2.start();
    } 
}

运行结果:

test2 : 4
test2 : 3
test2 : 2
test2 : 1
test2 : 0
test1 : 4
test1 : 3
test1 : 2
test1 : 1
test1 : 0

上述的代码,第一个方法时用了同步代码块的方式进行同步,传入的对象实例是this,表明是当前对象,当然,如果需要同步其他对象实例,也不可传入其他对象的实例;第二个方法是修饰方法的方式进行同步。因为第一个同步代码块传入的this,所以两个同步代码所需要获得的对象锁都是同一个对象锁,下面main方法时分别开启两个线程,分别调用test1和test2方法,那么两个线程都需要获得该对象锁,另一个线程必须等待。上面也给出了运行的结果可以看到:直到test2线程执行完毕,释放掉锁,test1线程才开始执行。(可能这个结果有人会有疑问,代码里面明明是先开启test1线程,为什么先执行的是test2呢?这是因为java编译器在编译成字节码的时候,会对代码进行一个重排序,也就是说,编译器会根据实际情况对代码进行一个合理的排序,编译前代码写在前面,在编译后的字节码不一定排在前面,所以这种运行结果是正常的, 这里是题外话,最主要是检验synchronized的用法的正确性)

上述的代码,第一个方法时用了同步代码块的方式进行同步,传入的对象实例是this,表明是当前对象,当然,如果需要同步其他对象实例,也不可传入其他对象的实例;第二个方法是修饰方法的方式进行同步。因为第一个同步代码块传入的this,所以两个同步代码所需要获得的对象锁都是同一个对象锁,下面main方法时分别开启两个线程,分别调用test1和test2方法,那么两个线程都需要获得该对象锁,另一个线程必须等待。上面也给出了运行的结果可以看到:直到test2线程执行完毕,释放掉锁,test1线程才开始执行。(可能这个结果有人会有疑问,代码里面明明是先开启test1线程,为什么先执行的是test2呢?这是因为java编译器在编译成字节码的时候,会对代码进行一个重排序,也就是说,编译器会根据实际情况对代码进行一个合理的排序,编译前代码写在前面,在编译后的字节码不一定排在前面,所以这种运行结果是正常的, 这里是题外话,最主要是检验synchronized的用法的正确性)

如果我们把test2方法的synchronized关键字去掉,执行结果会如何呢?

test2 : 4
test1 : 4
test2 : 3
test1 : 3
test1 : 2
test2 : 2
test1 : 1
test2 : 1
test1 : 0
test2 : 0

上面是执行结果,我们可以看到,结果输出是交替着进行输出的,这是因为,某个线程得到了对象锁,但是另一个线程还是可以访问没有进行同步的方法或者代码。进行了同步的方法(加锁方法)和没有进行同步的方法(普通方法)是互不影响的,一个线程进入了同步方法,得到了对象锁,其他线程还是可以访问那些没有同步的方法(普通方法)。这里涉及到内置锁的一个概念(此概念出自java并发编程实战第二章):对象的内置锁和对象的状态之间是没有内在的关联的,虽然大多数类都将内置锁用做一种有效的加锁机制,但对象的域并不一定通过内置锁来保护。当获取到与对象关联的内置锁时,并不能阻止其他线程访问该对象,当某个线程获得对象的锁之后,只能阻止其他线程获得同一个锁。之所以每个对象都有一个内置锁,是为了免去显式地创建锁对象。

所以synchronized只是一个内置锁的加锁机制,当某个方法加上synchronized关键字后,就表明要获得该内置锁才能执行,并不能阻止其他线程访问不需要获得该内置锁的方法。

2 synchronized修饰(静态)方法和代码块:

public class ThreadTest {

    public void test1() {  
         synchronized(ThreadTest.class) {  
              int i = 5;  
              while( i-- > 0) {  
                   System.out.println(Thread.currentThread().getName() + " : " + i);  
                   try {  
                        Thread.sleep(500);  
                   } catch (InterruptedException ie) {  
                   }  
              }  
         }  
    }
    public static synchronized void test2() {  
         int i = 5;  
         while( i-- > 0) {  
              System.out.println(Thread.currentThread().getName() + " : " + i);  
              try {  
                   Thread.sleep(500);  
              } catch (InterruptedException ie) {  
              }  
         }  
    }
    public static void main(String[] args) 
    {  
         final ThreadTest myt2 = new ThreadTest();  
         Thread test1 = new Thread(  new Runnable() {
             public void run() {
                 myt2.test1();  
             }  
         }, "test1");
         Thread test2 = new Thread(  new Runnable() {
             public void run() {
                 myt2.test2();
             }
         }, "test2");
         test1.start();
         test2.start();
    } 
}

运行结果:

test1 : 4
test1 : 3
test1 : 2
test1 : 1
test1 : 0
test2 : 4
test2 : 3
test2 : 2
test2 : 1
test2 : 0

其实,类锁修饰方法和代码块的效果和对象锁是一样的,因为类锁只是一个抽象出来的概念,只是为了区别静态方法的特点,因为静态方法是所有对象实例共用的,所以对应着synchronized修饰的静态方法的锁也是唯一的,所以抽象出来个类锁。其实这里的重点在下面这块代码,
3 synchronized同时修饰静态和非静态方法:

public class ThreadTest {

    public synchronized void test1() {  
         int i = 5;  
         while( i-- > 0) {  
              System.out.println(Thread.currentThread().getName() + " : " + i);  
              try {  
                   Thread.sleep(500);  
              } catch (InterruptedException ie) {  
              }  
         }  
    }
    public static synchronized void test2() {  
        int i = 5;  
        while( i-- > 0) {  
            System.out.println(Thread.currentThread().getName() + " : " + i);  
            try {  
                Thread.sleep(500);  
            } catch (InterruptedException ie) {  
            }  
        }  
    }
    public static void main(String[] args) 
    {  
         final ThreadTest myt2 = new ThreadTest();  
         Thread test1 = new Thread(  new Runnable() {
             public void run() {
                 myt2.test1();  
             }  
         }, "test1");
         Thread test2 = new Thread(  new Runnable() {
             public void run() {
                 myt2.test2();
             }
         }, "test2");
         test1.start();
         test2.start();
    } 
}

运行结果:

test1 : 4
test2 : 4
test2 : 3
test1 : 3
test2 : 2
test1 : 2
test2 : 1
test1 : 1
test1 : 0
test2 : 0

上面代码synchronized同时修饰静态方法和实例方法,但是运行结果是交替进行的,这证明了类锁和对象锁是两个不一样的锁,控制着不同的区域,它们是互不干扰的。同样,线程获得对象锁的同时,也可以获得该类锁,即同时获得两个锁,这是允许的。

synchronized总结:

  • 对于普通同步方法,锁是当前实例对象。
  • 对于静态同步方法,锁是当前类的class对象。
  • 对于同步方法块,锁是synchronized括号里配置的对象。

    到这里,对synchronized的用法已经有了一定的了解。这时有一个疑问,既然有了synchronized修饰方法的同步方式,为什么还需要synchronized修饰同步代码块的方式呢?而这个问题也是synchronized的缺陷所在

    synchronized的缺陷:当某个线程进入同步方法获得对象锁,那么其他线程访问这里对象的同步方法时,必须等待或者阻塞,这对高并发的系统是致命的,这很容易导致系统的崩溃。如果某个线程在同步方法里面发生了死循环,那么它就永远不会释放这个对象锁,那么其他线程就要永远的等待。这是一个致命的问题。

synchronized修饰同步代码块的方式则可以避免锁住需要访问的对象,使其他的线程能够访问该对象的其他方法。

不过这里还有一种特例,就是上面演示的第一个例子,对象锁synchronized同时修饰方法和代码块,这时也可以体现到同步代码块的优越性,如果test1方法同步代码块后面有非常多没有同步的代码,而且有一个100000的循环,这导致test1方法会执行时间非常长,那么如果直接用synchronized修饰方法,那么在方法没执行完之前,其他线程是不可以访问test2方法的,但是如果用了同步代码块,那么当退出代码块时就已经释放了对象锁,当线程还在执行test1的那个100000的循环时,其他线程就已经可以访问test2方法了。这就让阻塞的机会或者线程更少。让系统的性能更优越。

一个类的对象锁和另一个类的对象锁是没有关联的,当一个线程获得A类的对象锁时,它同时也可以获得B类的对象锁。

再来看看同步代码块和同步方法的不同:

1.从尺寸上讲,同步代码块比同步方法小。你可以把同步代码块看成是没上锁房间里的一块用带锁的屏风隔开的空间。

2.同步代码块还可以人为的指定获得某个其它对象的key。就像是指定用哪一把钥匙才能开这个屏风的锁,你可以用本房的钥匙;你也可以指定用另一个房子的钥匙才能开,这样的话,你要跑到另一栋房子那儿把那个钥匙拿来,并用那个房子的钥匙来打开这个房子的带锁的屏风。

参考
https://www.cnblogs.com/wl0000-03/p/5973039.html
https://www.cnblogs.com/coprince/p/5848614.html
https://www.cnblogs.com/wangyayun/p/6593446.html

猜你喜欢

转载自blog.csdn.net/bacoder/article/details/79262304
今日推荐