机器学习十大算法之二:KNN

一、KNN(K Near Neighbor)算法详解

一、概念:

KNN(K Near Neighbor):k个最近的邻居,即每个样本都可以用它最接近的k个邻居来代表。 如:“近朱者赤,近墨者黑”
这里写图片描述

最近邻 (k-Nearest Neighbors, KNN) 算法是一种分类算法, 1968年由 Cover和 Hart 提出, 应用场景有字符识别、 文本分类、 图像识别等领域。
该算法的思想是: 一个样本与数据集中的k个样本最相似, 如果这k个样本中的
大多数属于某一个类别, 则该样本也属于这个类别。

二、流程:

1) 计算已知类别数据集中的点与当前点之间的距离
2) 按距离递增次序排序
3) 选取与当前点距离最小的k个点
4) 统计前k个点所在的类别出现的频率
5) 返回前k个点出现频率最高的类别作为当前点的预测分类

通过算法流程可以发现:KNN没有一个明显的训练过程,它是懒惰学习的著名代表:
1)训练阶段:只要把样本保存起来,训练时间是零开销
2)测试阶段(预测阶段):收到数据在进行对比分类;

三、计算方法:

例子:
这里写图片描述
计算距离如下:
这里写图片描述

四、代码实现

import math

movie_data = {"宝贝当家": [45, 2, 9, "喜剧片"],
              "美人鱼": [21, 17, 5, "喜剧片"],
              "澳门风云3": [54, 9, 11, "喜剧片"],
              "功夫熊猫3": [39, 0, 31, "喜剧片"],
              "谍影重重": [5, 2, 57, "动作片"],
              "叶问3": [3, 2, 65, "动作片"],
              "伦敦陷落": [2, 3, 55, "动作片"],
              "我的特工爷爷": [6, 4, 21, "动作片"],
              "奔爱": [7, 46, 4, "爱情片"],
              "夜孔雀": [9, 39, 8, "爱情片"],
              "代理情人": [9, 38, 2, "爱情片"],
              "新步步惊心": [8, 34, 17, "爱情片"]}

# 测试样本  唐人街探案": [23, 3, 17, "?片"]
#下面为求与数据集中所有数据的距离代码:
x = [23, 3, 17]
KNN = []
for key, v in movie_data.items():
    d = math.sqrt((x[0] - v[0]) ** 2 + (x[1] - v[1]) ** 2 + (x[2] - v[2]) ** 2)
    KNN.append([key, round(d, 2)])

# 输出所用电影到 唐人街探案的距离
print(KNN)

#按照距离大小进行递增排序
KNN.sort(key=lambda dis: dis[1])

#选取距离最小的k个样本,这里取k=5;
KNN=KNN[:5]
print(KNN)

#确定前k个样本所在类别出现的频率,并输出出现频率最高的类别
labels = {"喜剧片":0,"动作片":0,"爱情片":0}
for s in KNN:
    label = movie_data[s[0]]
    labels[label[3]] += 1
labels =sorted(labels.items(),key=lambda l: l[1],reverse=True)
print(labels,labels[0][0],sep='\n')

代码和例子来自:K最近邻算法(KNN)

五、算法有点及注意

优点:
简单有效 ;重新训练代价低;算法复杂度低 ;适合类域交叉样本;适用大样本自动分类
缺点:
惰性学习;类别分类不标准化;输出可解释性不强;不均衡性;计算量较大

由以上例子可以看到,KNN存在的问题:

一、K值的选取

1、近似误差与估计误差:
近似误差:对现有训练集的训练误差,关注训练集,如果近似误差过小可能会出现过拟合的现象,对现有的训练集能有很好的预测,但是对未知的测试样本将会出现较大偏差的预测。模型本身不是最接近最佳模型。
估计误差:可以理解为对测试集的测试误差,关注测试集,估计误差小说明对未知数据的预测能力好,模型本身最接近最佳模型。
2、K值确定标准:
K值过小:k值小,特征空间被划分为更多子空间(模型的项越多),整体模型变复杂,容易发生过拟合,k值越小,选择的范围就比较小,训练的时候命中率较高,近似误差小,而用test的时候就容易出错,估计误差大,容易过拟合。
K值=N:无论输入实例是什么,都将简单的预测他属于训练实例中最多的类。

二、距离的选择

1.对于不同的数据结构,根据需要选取不同的距离公式:
参考:机器学习常用距离
一般数据常用欧式距离

三、计算量大使用KD树优化

在保存数据的时候使用KD树算法进行数据保存,方便数据的检索;

二、kd树

一、原理:

Kd-树是K-dimension tree的缩写,是对数据点在k维空间(如二维(x,y),三维(x,y,z),k维(x1,y,z..))中划分的一种数据结构,主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索)。本质上说,Kd-树就是一种平衡二叉树。

每次分割空间的线都经过一个数据点,这样不停的二分划分最终划分所有的点都爱分割线上。先通过大空间,在通过小空间。这样不断分类就是二叉树的分类方法
KD树

类比“二分查找”: 给出一组数据: [9 1 4 7 2 5 0 3 8], 要查找8。如果挨个查找(线性扫描),那么将会把数据集都遍历一遍。而如果排一下序那数据集就变成了: [0 1 2 3 4 5 6 7 8 9], 按前一种方式我们进行了很多没有必要的查找, 现在如果我们以5为分界点, 那么数据集就被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]。
因此, 根本久没有必要进入第一个簇,可以直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点, 这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类, “挨得近”的数据点就在一个空间里面。

一个三维k-d树。 第一次划分(红色)把根节点(白色)划分成两个节点,然后它们分别再次被划分(绿色) 为两个子节点。最后这四个子节点的每一个都被划分(蓝色) 为两个子节点。 因为没有更进一步的划分, 最后得到的八个节点称为叶子节点
这里写图片描述

KD树算法原理:

TIPS:SIFT :Scale Invariant Feature Transform,尺度不变特征变换,由加拿大教授David G.Lowe提出的

构建数据索引,因为实际数据一般都会呈现簇状的聚类形态,因此我们想到建立数据索引,然后再进行快速匹配。索引树是一种树结构索引方法,其基本思想是对搜索空间进行层次划分。根据划分的空间是否有混叠可以分为Clipping和Overlapping两种。前者划分空间没有重叠,其代表就是k-d树;后者划分空间相互有交叠,其代表为R树。

1975年,来自斯坦福大学的Jon Louis Bentley在ACM杂志上发表的一篇论文:Multidimensional Binary Search Trees Used for Associative Searching 中正式提出和阐述的了把空间划分为多个部分的k-d树

参考:https://blog.csdn.net/app_12062011/article/details/51986805

二、实现方法:

第一个问题简单的解决方法可以是选择随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。好的划分方法可以使构建的树比较平衡, 可以每次选择中位数来进行划分, 这样问题2也得到了解决。
这里写图片描述
6个二维数据点{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)}构建kd树的具体步骤为:

  1. 确定:split域=x。具体是:6个数据点在x,y维度上的数据方差分别为39,28.63,所以在x轴上方差更大,故split域值为x;
  2. 确定:Node-data = (7,2)。具体是:根据x维上的值将数据排序,6个数据的中值(所谓中值,即中间大小的值)为7,所以Node-data域位数据点(7,2)。这样,该节点的分割超平面就是通过(7,2)并垂直于:split=x轴的直线x=7;
  3. 确定:左子空间和右子空间。具体是:分割超平面x=7将整个空间分为两部分:x<=7的部分为左子空间,包含3个节点={(2,3),(5,4),(4,7)};另一部分为右子空间,包含2个节点={(9,6),(8,1)};

    如上算法所述,kd树的构建是一个递归过程,我们对左子空间和右子空间内的数据重复根节点的过程就可以得到一级子节点(5,4)和(9,6),同时将空间和数据集进一步细分,如此往复直到空间中只包含一个数据点。
    与此同时,经过对上面所示的空间划分之后,我们可以看出,点(7,2)可以为根结点,从根结点出发的两条红粗斜线指向的(5,4)和(9,6)则为根结点的左右子结点,而(2,3),(4,7)则为(5,4)的左右孩子(通过两条细红斜线相连),最后,(8,1)为(9,6)的左孩子(通过细红斜线相连)。如此,便形成了下面这样一棵k-d树:
    这里写图片描述

代码实现:

# -*- coding: utf-8 -*-

#from operator import itemgetter
import sys
reload(sys)
sys.setdefaultencoding('utf8')


# kd-tree每个结点中主要包含的数据结构如下 
class KdNode(object):
    def __init__(self, dom_elt, split, left, right):
        self.dom_elt = dom_elt  # k维向量节点(k维空间中的一个样本点)
        self.split = split      # 整数(进行分割维度的序号)
        self.left = left        # 该结点分割超平面左子空间构成的kd-tree
        self.right = right      # 该结点分割超平面右子空间构成的kd-tree


class KdTree(object):
    def __init__(self, data):
        k = len(data[0])  # 数据维度

        def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
            if not data_set:    # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象中的序号
            #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2      # //为Python中的整数除法
            median = data_set[split_pos]        # 中位数分割点             
            split_next = (split + 1) % k        # cycle coordinates

            # 递归的创建kd树
            return KdNode(median, split, 
                          CreateNode(split_next, data_set[:split_pos]),     # 创建左子树
                          CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树

        self.root = CreateNode(0, data)         # 从第0维分量开始构建kd树,返回根节点


# KDTree的前序遍历
def preorder(root):  
    print root.dom_elt  
    if root.left:      # 节点不为空
        preorder(root.left)  
    if root.right:  
        preorder(root.right)  


if __name__ == "__main__":
    data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
    kd = KdTree(data)
    preorder(kd.root)

猜你喜欢

转载自blog.csdn.net/u010700066/article/details/80991801