损失函数loss大大总结

分类任务loss:


二分类交叉熵损失sigmoid_cross_entropy:


TensorFlow 接口:

tf.losses.sigmoid_cross_entropy(
    multi_class_labels,
    logits,
    weights=1.0,
    label_smoothing=0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)
tf.nn.sigmoid_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    name=None
)

keras 接口:

binary_crossentropy(y_true, y_pred)

二分类平衡交叉熵损失balanced_sigmoid_cross_entropy:

该损失也是用于2分类的任务,相比于sigmoid_cross_entrop的优势在于引入了平衡参数 ,可以进行正负样本的平衡,得到比sigmoid_cross_entrop更好的效果。
多分类交叉熵损失softmax_cross_entropy:


TensorFlow 接口:
tf.losses.softmax_cross_entropy(
    onehot_labels,
    logits,
    weights=1.0,
    label_smoothing=0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)
tf.nn.softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    dim=-1,
    name=None
)
tf.nn.sparse_softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    name=None
)

keras 接口:

categorical_crossentropy(y_true, y_pred)
sparse_categorical_crossentropy(y_true, y_pred)

focal loss

focal loss为凯明大神的大作,主要用于解决多分类任务中样本不平衡的现象,可以获得比softmax_cross_entropy更好的分类效果。
论文中α=0.25,γ=2效果最好。

dice loss:

2分类任务时使用的loss,本质就是不断学习,使得交比并越来越大。

TensorFlow 接口:

def dice_coefficient(y_true_cls, y_pred_cls):
    '''
    dice loss
    :param y_true_cls:
    :param y_pred_cls:
    :return:
    '''
    eps = 1e-5
    intersection = tf.reduce_sum(y_true_cls * y_pred_cls )
    union = tf.reduce_sum(y_true_cls ) + tf.reduce_sum(y_pred_cls) + eps
    loss = 1. - (2 * intersection / union)
    tf.summary.scalar('classification_dice_loss', loss)
    return loss

合页损失hinge_loss:

也叫铰链损失,是svm中使用的损失函数。

由于合页损失优化到满足小于一定gap距离就会停止优化,而交叉熵损失却是一直在优化,所以,通常情况下,交叉熵损失效果优于合页损失。


TensorFlow 接口:

tf.losses.hinge_loss(
    labels,
    logits,
    weights=1.0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)

keras 接口:

hinge(y_true, y_pred)


Connectionisttemporal classification(ctc loss):

对于预测的序列和label序列长度不一致的情况下,可以使用ctc计算该2个序列的loss,主要用于文本分类识别和语音识别中。

TensorFlow 接口:

tf.nn.ctc_loss(
    labels,
    inputs,
    sequence_length,
    preprocess_collapse_repeated=False,
    ctc_merge_repeated=True,
    ignore_longer_outputs_than_inputs=False,
    time_major=True
)

keras 接口:

tf.keras.backend.ctc_batch_cost(
    y_true,
    y_pred,
    input_length,
    label_length
)

编辑距离 edit loss:

编辑距离,也叫莱文斯坦Levenshtein 距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
该损失函数的优势在于类似于ctc loss可以计算2个长度不等的序列的损失。
TensorFlow 接口:
tf.edit_distance(
    hypothesis,
    truth,
    normalize=True,
    name='edit_distance'
)

KL散度:

KL散度( Kullback–Leibler divergence),也叫相对熵,是描述两个概率分布P和Q差异的一种方法。它是非对称的,这意味着D(P||Q) ≠ D(Q||P)。特别的,在信息论中,D(P||Q)表示当用概率分布Q来拟合真实分布P时,产生的信息损耗,其中P表示真实分布,Q表示P的拟合分布。
TensorFlow 接口:
tf.distributions.kl_divergence(
    distribution_a,
    distribution_b,
    allow_nan_stats=True,
    name=None
)

tf.contrib.distributions.kl(
dist_a,
    dist_b,
    allow_nan =False,
    name=None
)

最大间隔损失large margin softmax loss:

用于拉大类间距离的损失函数,可以训练得到比传统softmax loss更好的分类效果。

最大间隔损失主要引入了夹角cos值进行距离的度量。假设bias为0的情况下,就可以得出如上的公式。

其中fai(seita)需要满足下面的条件。


为了进行距离的度量,在cos夹角中引入了参数m。该m为一个正整数,可以起到控制类间间隔的作用。M越大,类间间隔越大。当m=1时,等价于传统交叉熵损失。基本原理如下面公式

论文中提供的满足该条件的公式如下

中心损失center loss:

中心损失主要主要用于减少类内距离,虽然只是减少了累内距离,效果上却可以表现出累内距离小了,类间距离就可以增大的效果。该损失不可以直接使用,需要配合传统的softmax loss一起使用。可以起到比单纯softmax loss更好的分类效果。




回归任务loss:

均方误差mean squareerrorMSE)和L2范数:

MSE表示了预测值与目标值之间差值的平方和然后求平均

L2损失表示了预测值与目标值之间差值的平方和然后开更方,L2表示的是欧几里得距离。


MSE和L2的曲线走势都一样。区别在于一个是求的平均np.mean(),一个是求的更方np.sqrt()

TensorFlow 接口:

tf.losses.mean_squared_error(
    labels,
    predictions,
    weights=1.0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)
tf.metrics.mean_squared_error(
    labels,
    predictions,
    weights=None,
    metrics_collections=None,
    updates_collections=None,
    name=None
)
keras 接口:
mean_squared_error(y_true, y_pred)

平均绝对误差meanabsolute error(MAE )L1范数:

MAE表示了预测值与目标值之间差值的绝对值然后求平均

L1表示了预测值与目标值之间差值的绝对值,L1也叫做曼哈顿距离

MAE和L1的区别在于一个求了均值np.mean(),一个没有求np.sum()。2者的曲线走势也是完全一致的。

TensorFlow 接口:
tf.metrics.mean_absolute_error(
    labels,
    predictions,
    weights=None,
    metrics_collections=None,
    updates_collections=None,
    name=None
)

keras 接口:

mean_absolute_error(y_true, y_pred)

MSE,MAE对比:

MAE损失对于局外点更鲁棒,但它的导数不连续使得寻找最优解的过程低效;MSE损失对于局外点敏感,但在优化过程中更为稳定和准确。

Huber Losssmooth L1

Huber loss具备了MAE和MSE各自的优点,当δ趋向于0时它就退化成了MAE,而当δ趋向于无穷时则退化为了MSE。

Smooth L1 loss也具备了L1 loss和L2 loss各自的优点,本质就是L1和L2的组合。
Huber loss和Smooth L1 loss具有相同的曲线走势,当Huber loss中的δ等于1时,Huber loss等价于Smooth L1 loss。

对于Huber损失来说,δ的选择十分重要,它决定了模型处理局外点的行为。当残差大于δ时使用L1损失,很小时则使用更为合适的L2损失来进行优化。

Huber损失函数克服了MAE和MSE的缺点,不仅可以保持损失函数具有连续的导数,同时可以利用MSE梯度随误差减小的特性来得到更精确的最小值,也对局外点具有更好的鲁棒性。

但Huber损失函数的良好表现得益于精心训练的超参数δ。

TensorFlow接口:
tf.losses.huber_loss(
    labels,
    predictions,
    weights=1.0,
    delta=1.0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)
对数双曲余弦 logcosh:
其优点在于对于很小的误差来说log(cosh(x))与(x**2)/2很相近,而对于很大的误差则与abs(x)-log2很相近。这意味着logcosh损失函数可以在拥有MSE优点的同时也不会受到局外点的太多影响。它拥有Huber的所有优点,并且在每一个点都是二次可导的。

keras 接口:
logcosh(y_true, y_pred)






猜你喜欢

转载自blog.csdn.net/qq_14845119/article/details/80787753