Android之AsyncTask源码解析

做Android开发的肯定有用到AsyncTask这个类,对于执行耗时操作+更新UI这个业务很有效,它内部使用一个线程池,串行执行每一个线程,线程生命周期不用你自己管理,想要异步处理的东西往里扔就行了,而且doInBackground执行完的结果可以直接在onPostExecute方法参数里得到,直接更新UI界面。

这一套业务也可以使用Thread来做,但是使用Thread有些麻烦,每次使用都要自己new一个线程,要自己管理其生命周期,而且android还不允许在非主线程的线程更新UI,这样的话thread运行得到的结果如果需要更新UI可能还需要发一个handler通知主线程更新界面,代码写起来比较凌乱不如asynctask一目了然好维护。

AsyncTask的使用比较简单,这里就不多说了,今天主要分析下AsyncTask的源码,看看Google是怎么设计这种业务的。

public abstract class AsyncTask<Params, Progress, Result> {
    private static final String LOG_TAG = "AsyncTask";

    //获取CPU数量
    private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
    //确定线程池核心线程数量
    private static final int CORE_POOL_SIZE = CPU_COUNT + 1;
    //确定线程池线程最大数量
    private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
    private static final int KEEP_ALIVE = 1;

    //线程工厂,下面实例化线程池要使用
    private static final ThreadFactory sThreadFactory = new ThreadFactory() {
        //提供原子操作的Integer类,确保getAndIncrement()线程安全
        private final AtomicInteger mCount = new AtomicInteger(1);
        //重写该方法,确定新增加的线程的线程名,就是增加一个标识,表明这个线程是AsyncTask的
        public Thread newThread(Runnable r) {
            return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
        }
    };

    /**
     * BlockingQueue 是Concurrent包中的一种阻塞队列
     * 当BlockingQueue为空, 从队列取数据时会让线程等待状态,直到能取出非空的数据,线程会被唤醒。
     * 当BlockingQueue是满的,存数据到队列时线程也会进入等待状态,直到有空间,线程才会被唤醒。
     * 在这里是存放待执行的Runnable,容量为128
     */
    private static final BlockingQueue<Runnable> sPoolWorkQueue =
            new LinkedBlockingQueue<Runnable>(128);

    /**
     * An {@link Executor} that can be used to execute tasks in parallel.
     * 根据上面的参数实例化线程池
     */
    public static final Executor THREAD_POOL_EXECUTOR
            = new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
                    TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);

    /**
     * An {@link Executor} that executes tasks one at a time in serial
     * order.  This serialization is global to a particular process.
     * AsyncTask内部实现的线程池,串行执行线程
     */
    public static final Executor SERIAL_EXECUTOR = new SerialExecutor();

    /**
     * Handler消息的what
     */
    private static final int MESSAGE_POST_RESULT = 0x1;
    private static final int MESSAGE_POST_PROGRESS = 0x2;

    //用原子符修饰sDefaultExecutor,并且将SERIAL_EXECUTOR赋值给sDefaultExecutor
    //AsyncTask内部使用它进行执行任务
    private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
    //主线程的Handler
    private static InternalHandler sHandler;

    /**
     * AstncTask内部类,实现了Callable接口
     * 内部实例了一个保存参数的mParams数组
     * Callable接口内部有一个call方法,方法里是开发者具体逻辑实现,与Runnable接口类似,
     * 只不过Runnable里的run方法没有返回值,而call方法有返回值
     */
    private final WorkerRunnable<Params, Result> mWorker;
    /**
     * FutureTask类实现了Runnable接口和Future接口,且内部维护了一个Callable对象,
     * FutureTask的构造函数中需要传入一个Callable对象以对其进行实例化
     * Executor的execute方法接收一个Runnable对象,由于FutureTask实现了Runnable接口,
     * 所以可以把一个FutureTask对象传递给Executor的execute方法去执行。
     * 当任务执行完毕的时候会执行FutureTask的done方法,我们可以在这个方法中写一些逻辑处理。
     * 在任务执行的过程中,我们也可以随时调用FutureTask的cancel方法取消执行任务,任务取消后也会执行FutureTask的done方法。
     * 我们也可以通过FutureTask的get方法阻塞式地等待任务的返回值(即Callable的call方法的返回值),
     * 如果任务执行完了就立即返回执行的结果,否则就阻塞式等待call方法的完成。
     */
    private final FutureTask<Result> mFuture;

    //标识当前正在执行的线程的状态
    private volatile Status mStatus = Status.PENDING;
    /**
     * 提供原子操作的Boolean类型,保证线程安全
     * mCancelled表示任务是否被取消
     * mTaskInvoked是否开始执行了
     */
    private final AtomicBoolean mCancelled = new AtomicBoolean();
    private final AtomicBoolean mTaskInvoked = new AtomicBoolean();

    /**
     * 自定义一个线程池,串行执行任务
     * 串行执行逻辑就是:
     * 首先通过execute(Params... params)方法执行到这个类的execute;
     * 然后将mFuture封装成一个Runnable(里面的run方法的逻辑就是先执行mFuture的run方法,
     * 执行结束后就通过scheduleNext()方法取出下一个任务执行,循环往复)添加到队列里;
     * 但是一开始mActive肯定为null,所以就通过scheduleNext()方法取出上一步添加的任务去执行;
     * 以后就循环执行run方法里的逻辑
     */
    private static class SerialExecutor implements Executor {
        /**
         * ArrayDeque是一个双向队列,能够同时在两端进行插入删除操作,
         * 不过它的内部没有做同步操作,虽然效率上要高于linkedList, vector等,但是存在并发问题
         * 需要开发者自己做维护,这里SerialExecutor就是串行执行,所以没有并发问题
         * 在这里存放Runnable,队列容量没有限制
         */
        final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
        //当前正在执行的任务
        Runnable mActive;

        //实现Executor的execute方法,用于串行执行任务
        public synchronized void execute(final Runnable r) {
            //通过队列的offer方法将封装后的r添加到队列的最后
            mTasks.offer(new Runnable() {
                public void run() {
                    try {
                        r.run();
                    } finally {
                        //r执行结束后执行下一个任务
                        scheduleNext();
                    }
                }
            });
            //当前没有执行任务,就执行这个方法去取任务执行
            if (mActive == null) {
                scheduleNext();
            }
        }
        //返回并删除队列的头部第一个元素,然后把线程交给线程池执行
        protected synchronized void scheduleNext() {
            if ((mActive = mTasks.poll()) != null) {
                THREAD_POOL_EXECUTOR.execute(mActive);
            }
        }
    }

    /**
     * Indicates the current status of the task. Each status will be set only once
     * during the lifetime of a task.
     */
    public enum Status {
        /**
         * Indicates that the task has not been executed yet.
         * 表示任务还没有开始执行
         */
        PENDING,
        /**
         * Indicates that the task is running.
         * 表示任务正在执行
         */
        RUNNING,
        /**
         * Indicates that {@link AsyncTask#onPostExecute} has finished.
         * 表示任务执行结束
         */
        FINISHED,
    }

    //获取Handler
    private static Handler getHandler() {
        synchronized (AsyncTask.class) {
            if (sHandler == null) {
                sHandler = new InternalHandler();
            }
            return sHandler;
        }
    }

    /** @hide */
    public static void setDefaultExecutor(Executor exec) {
        sDefaultExecutor = exec;
    }

    /**
     * Creates a new asynchronous task. This constructor must be invoked on the UI thread.
     */
    public AsyncTask() {
        //实例化mWorker对象,
        mWorker = new WorkerRunnable<Params, Result>() {
            //实现call方法,执行任务
            public Result call() throws Exception {
                //将mTaskInvoked设置为true,表明任务开始执行
                mTaskInvoked.set(true);
                //将该线程设置为后台线程
                Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
                //这个方法就是我们具体逻辑的实现,然后获取返回结果
                Result result = doInBackground(mParams);
                Binder.flushPendingCommands();
                //将返回结果传递给postResult
                return postResult(result);
            }
        };

        //当mFuture被sDefaultExecutor执行的时候,FutureTask内部run方法中的callable对象会调用call方法,
        // 就会走到上面的mWorker对象的call方法,方法走完,FutureTask内部run方法中会调用set(result)方法或者setException(ex)方法
        // 这两个方法里都会回调done()方法。
        mFuture = new FutureTask<Result>(mWorker) {
            //任务执行结束或者被取消都会调用done方法
            @Override
            protected void done() {
                try {
                    //任务正常执行完成
                    postResultIfNotInvoked(get());
                } catch (InterruptedException e) {
                    //任务出现异常
                    android.util.Log.w(LOG_TAG, e);
                } catch (ExecutionException e) {
                    //任务执行出现异常
                    throw new RuntimeException("An error occurred while executing doInBackground()",
                            e.getCause());
                } catch (CancellationException e) {
                    //任务取消
                    postResultIfNotInvoked(null);
                }
            }
        };
    }

    private void postResultIfNotInvoked(Result result) {
        final boolean wasTaskInvoked = mTaskInvoked.get();
        if (!wasTaskInvoked) {
            //call方法没有被调用执行这个
            postResult(result);
        }
    }

    /**
     * AsyncTaskResult是一个内部类,里面包含执行任务的AsyncTask对象和返回的数据
     * 将结果封装到AsyncTaskResultHandler中发送出去
     * @param result
     * @return
     */
    private Result postResult(Result result) {
        @SuppressWarnings("unchecked")
        Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
                new AsyncTaskResult<Result>(this, result));
        message.sendToTarget();
        return result;
    }

    /**
     * Returns the current status of this task.
     *
     * @return The current status.
     */
    public final Status getStatus() {
        return mStatus;
    }

    /**
     * Override this method to perform a computation on a background thread. The
     * specified parameters are the parameters passed to {@link #execute}
     * by the caller of this task.
     *
     * This method can call {@link #publishProgress} to publish updates
     * on the UI thread.
     *
     * @param params The parameters of the task.
     *
     * @return A result, defined by the subclass of this task.
     *
     * @see #onPreExecute()
     * @see #onPostExecute
     * @see #publishProgress
     */
    @WorkerThread
    protected abstract Result doInBackground(Params... params);

    /**
     * Runs on the UI thread before {@link #doInBackground}.
     *
     * @see #onPostExecute
     * @see #doInBackground
     */
    @MainThread
    protected void onPreExecute() {
    }

    /**
     * <p>Runs on the UI thread after {@link #doInBackground}. The
     * specified result is the value returned by {@link #doInBackground}.</p>
     * 
     * <p>This method won't be invoked if the task was cancelled.</p>
     *
     * @param result The result of the operation computed by {@link #doInBackground}.
     *
     * @see #onPreExecute
     * @see #doInBackground
     * @see #onCancelled(Object) 
     */
    @SuppressWarnings({"UnusedDeclaration"})
    @MainThread
    protected void onPostExecute(Result result) {
    }

    /**
     * Runs on the UI thread after {@link #publishProgress} is invoked.
     * The specified values are the values passed to {@link #publishProgress}.
     *
     * @param values The values indicating progress.
     *
     * @see #publishProgress
     * @see #doInBackground
     */
    @SuppressWarnings({"UnusedDeclaration"})
    @MainThread
    protected void onProgressUpdate(Progress... values) {
    }

    /**
     * <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and
     * {@link #doInBackground(Object[])} has finished.</p>
     * 
     * <p>The default implementation simply invokes {@link #onCancelled()} and
     * ignores the result. If you write your own implementation, do not call
     * <code>super.onCancelled(result)</code>.</p>
     *
     * @param result The result, if any, computed in
     *               {@link #doInBackground(Object[])}, can be null
     * 
     * @see #cancel(boolean)
     * @see #isCancelled()
     */
    @SuppressWarnings({"UnusedParameters"})
    @MainThread
    protected void onCancelled(Result result) {
        onCancelled();
    }    

    /**
     * <p>Applications should preferably override {@link #onCancelled(Object)}.
     * This method is invoked by the default implementation of
     * {@link #onCancelled(Object)}.</p>
     * 
     * <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and
     * {@link #doInBackground(Object[])} has finished.</p>
     *
     * @see #onCancelled(Object) 
     * @see #cancel(boolean)
     * @see #isCancelled()
     */
    @MainThread
    protected void onCancelled() {
    }

    /**
     * Returns <tt>true</tt> if this task was cancelled before it completed
     * normally. If you are calling {@link #cancel(boolean)} on the task,
     * the value returned by this method should be checked periodically from
     * {@link #doInBackground(Object[])} to end the task as soon as possible.
     *
     * @return <tt>true</tt> if task was cancelled before it completed
     *
     * @see #cancel(boolean)
     */
    public final boolean isCancelled() {
        return mCancelled.get();
    }

    /**
     * <p>Attempts to cancel execution of this task.  This attempt will
     * fail if the task has already completed, already been cancelled,
     * or could not be cancelled for some other reason. If successful,
     * and this task has not started when <tt>cancel</tt> is called,
     * this task should never run. If the task has already started,
     * then the <tt>mayInterruptIfRunning</tt> parameter determines
     * whether the thread executing this task should be interrupted in
     * an attempt to stop the task.</p>
     * 
     * <p>Calling this method will result in {@link #onCancelled(Object)} being
     * invoked on the UI thread after {@link #doInBackground(Object[])}
     * returns. Calling this method guarantees that {@link #onPostExecute(Object)}
     * is never invoked. After invoking this method, you should check the
     * value returned by {@link #isCancelled()} periodically from
     * {@link #doInBackground(Object[])} to finish the task as early as
     * possible.</p>
     *
     * @param mayInterruptIfRunning <tt>true</tt> if the thread executing this
     *        task should be interrupted; otherwise, in-progress tasks are allowed
     *        to complete.
     *
     * @return <tt>false</tt> if the task could not be cancelled,
     *         typically because it has already completed normally;
     *         <tt>true</tt> otherwise
     *
     * @see #isCancelled()
     * @see #onCancelled(Object)
     */
    public final boolean cancel(boolean mayInterruptIfRunning) {
        mCancelled.set(true);
        return mFuture.cancel(mayInterruptIfRunning);
    }

    /**
     * Waits if necessary for the computation to complete, and then
     * retrieves its result.
     *
     * @return The computed result.
     *
     * @throws CancellationException If the computation was cancelled.
     * @throws ExecutionException If the computation threw an exception.
     * @throws InterruptedException If the current thread was interrupted
     *         while waiting.
     */
    public final Result get() throws InterruptedException, ExecutionException {
        return mFuture.get();
    }

    /**
     * Waits if necessary for at most the given time for the computation
     * to complete, and then retrieves its result.
     *
     * @param timeout Time to wait before cancelling the operation.
     * @param unit The time unit for the timeout.
     *
     * @return The computed result.
     *
     * @throws CancellationException If the computation was cancelled.
     * @throws ExecutionException If the computation threw an exception.
     * @throws InterruptedException If the current thread was interrupted
     *         while waiting.
     * @throws TimeoutException If the wait timed out.
     */
    public final Result get(long timeout, TimeUnit unit) throws InterruptedException,
            ExecutionException, TimeoutException {
        return mFuture.get(timeout, unit);
    }

    /**
     * Executes the task with the specified parameters. The task returns
     * itself (this) so that the caller can keep a reference to it.
     * 
     * <p>Note: this function schedules the task on a queue for a single background
     * thread or pool of threads depending on the platform version.  When first
     * introduced, AsyncTasks were executed serially on a single background thread.
     * Starting with {@link android.os.Build.VERSION_CODES#DONUT}, this was changed
     * to a pool of threads allowing multiple tasks to operate in parallel. Starting
     * {@link android.os.Build.VERSION_CODES#HONEYCOMB}, tasks are back to being
     * executed on a single thread to avoid common application errors caused
     * by parallel execution.  If you truly want parallel execution, you can use
     * the {@link #executeOnExecutor} version of this method
     * with {@link #THREAD_POOL_EXECUTOR}; however, see commentary there for warnings
     * on its use.
     *
     * <p>This method must be invoked on the UI thread.
     *
     * @param params The parameters of the task.
     *
     * @return This instance of AsyncTask.
     *
     * @throws IllegalStateException If {@link #getStatus()} returns either
     *         {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.
     *
     * @see #executeOnExecutor(java.util.concurrent.Executor, Object[])
     * @see #execute(Runnable)
     */
    @MainThread
    public final AsyncTask<Params, Progress, Result> execute(Params... params) {
        return executeOnExecutor(sDefaultExecutor, params);
    }

    /**
     * Executes the task with the specified parameters. The task returns
     * itself (this) so that the caller can keep a reference to it.
     * 
     * <p>This method is typically used with {@link #THREAD_POOL_EXECUTOR} to
     * allow multiple tasks to run in parallel on a pool of threads managed by
     * AsyncTask, however you can also use your own {@link Executor} for custom
     * behavior.
     * 
     * <p><em>Warning:</em> Allowing multiple tasks to run in parallel from
     * a thread pool is generally <em>not</em> what one wants, because the order
     * of their operation is not defined.  For example, if these tasks are used
     * to modify any state in common (such as writing a file due to a button click),
     * there are no guarantees on the order of the modifications.
     * Without careful work it is possible in rare cases for the newer version
     * of the data to be over-written by an older one, leading to obscure data
     * loss and stability issues.  Such changes are best
     * executed in serial; to guarantee such work is serialized regardless of
     * platform version you can use this function with {@link #SERIAL_EXECUTOR}.
     *
     * <p>This method must be invoked on the UI thread.
     *
     * @param exec The executor to use.  {@link #THREAD_POOL_EXECUTOR} is available as a
     *              convenient process-wide thread pool for tasks that are loosely coupled.
     * @param params The parameters of the task.
     *
     * @return This instance of AsyncTask.
     *
     * @throws IllegalStateException If {@link #getStatus()} returns either
     *         {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.
     *
     * @see #execute(Object[])
     */
    @MainThread
    public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
            Params... params) {
        if (mStatus != Status.PENDING) {
            switch (mStatus) {
                case RUNNING:
                    //如果这个AsyncTask已经执行了还执行这个方法就抛出异常
                    throw new IllegalStateException("Cannot execute task:"
                            + " the task is already running.");
                case FINISHED:
                    //如果这个AsyncTask已经执行结束了还执行这个方法就抛出异常
                    throw new IllegalStateException("Cannot execute task:"
                            + " the task has already been executed "
                            + "(a task can be executed only once)");
            }
        }

        //将该任务标识为正在执行
        mStatus = Status.RUNNING;
        //回调该方法,开发者可在这个方法里做一些准备工作
        onPreExecute();
        //将开发者传入的参数赋值给mWorker对象的内部变量
        mWorker.mParams = params;
        //让sDefaultExecutor执行mFuture,其实就是SerialExecutor这个类去执行execute(final Runnable r)方法,
        //因为mFuture实现了Runnable接口,所以线程池可以执行这个对象
        exec.execute(mFuture);

        return this;
    }

    /**
     * Convenience version of {@link #execute(Object...)} for use with
     * a simple Runnable object. See {@link #execute(Object[])} for more
     * information on the order of execution.
     *
     * @see #execute(Object[])
     * @see #executeOnExecutor(java.util.concurrent.Executor, Object[])
     */
    @MainThread
    public static void execute(Runnable runnable) {
        sDefaultExecutor.execute(runnable);
    }

    /**
     * This method can be invoked from {@link #doInBackground} to
     * publish updates on the UI thread while the background computation is
     * still running. Each call to this method will trigger the execution of
     * {@link #onProgressUpdate} on the UI thread.
     *
     * {@link #onProgressUpdate} will not be called if the task has been
     * canceled.
     *
     * @param values The progress values to update the UI with.
     *
     * @see #onProgressUpdate
     * @see #doInBackground
     */
    @WorkerThread
    protected final void publishProgress(Progress... values) {
        if (!isCancelled()) {
            getHandler().obtainMessage(MESSAGE_POST_PROGRESS,
                    new AsyncTaskResult<Progress>(this, values)).sendToTarget();
        }
    }

    private void finish(Result result) {
        if (isCancelled()) {
            //如果任务被取消了,回调该方法
            onCancelled(result);
        } else {
            //如果任务正常走完,就回调该方法
            onPostExecute(result);
        }
        //将该任务状态设置为结束
        mStatus = Status.FINISHED;
    }

    private static class InternalHandler extends Handler {
        public InternalHandler() {
            //获取主线程的Looper,将InternalHandler与主线程绑定
            super(Looper.getMainLooper());
        }

        @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
        @Override
        public void handleMessage(Message msg) {
            AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
            switch (msg.what) {
                case MESSAGE_POST_RESULT:
                    // There is only one result
                    //发布最终结果
                    result.mTask.finish(result.mData[0]);
                    break;
                case MESSAGE_POST_PROGRESS:
                    //开发者通过调用publishProgress,会转到这里将过程回调给开发者
                    result.mTask.onProgressUpdate(result.mData);
                    break;
            }
        }
    }

    private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
        Params[] mParams;
    }

    /**
     * 将AsyncTask和返回数据封装成一个对象,用于Handler通信时使用
     * @param <Data>
     */
    @SuppressWarnings({"RawUseOfParameterizedType"})
    private static class AsyncTaskResult<Data> {
        //具体执行任务的AsyncTask
        final AsyncTask mTask;
        //存储数据,一个可变长度的数组
        final Data[] mData;

        AsyncTaskResult(AsyncTask task, Data... data) {
            mTask = task;
            mData = data;
        }
    }
}

具体什么意思已经注释了,很清楚,那大概整理下流程,从代码的上面开始往下看

     * 获取cpu数量,核心线程数量,线程池最大线程数量,实例化了一个线程工厂(标识新线程的名称),一个
     存放线程池的阻塞队列,最后构建一个线程池,这些东西都是静态的,不会每次new Asynctask都会实例化

     * AsyncTask内部自己实现了一个线程池SerialExecutor类,从这个名字也可以看出来,这是一个串行执行器,
     平时看到很多分析博客还在说AsyncTask可以同时运行多个线程,其实这是不对的,只有老早的版本才会这样。
     至于串行的实现原理,上面注释已经很清楚了。之后把这个类的引用赋值给sDefaultExecutor

     * 接下来就是AsyncTask构造方法了,做了两件事,第一件就是实例化了一个WorkerRunnable对象,它是内部
     类,实现了Callable接口,并且定义了一个存放开发者传入的参数的数组,重写了call方法,这里就是耗时
     操作的执行地,并且将执行结果返回,最终会回调到onPostExecute(Result result);第二件事就是实例化
     一个FutureTask对象,重写done方法,当任务执行结束或者出现异常会回调这个方法。

    * 最后就是两个最重要的方法了,开发者new了一个AsyncTask对象后调用它的execute(Params... params)方法,
    这里走到了executeOnExecutor(Executor exec,Params... params)方法,第一个参数是sDefaultExecutor,也就是
    SerialExecutor对象,第二个参数是开发者传入的参数。异步任务运行逻辑将FutureTask丢到SerialExecutor的类
    的execute方法中,这个方法将FutureTask又封装成了一个Runnable,这个Runnable的run方法逻辑就是执行
    FutureTask的run方法(这里面会回调WorkerRunnable的call方法,这里面会回调doInBackground;执行完毕后
    调用FutureTask的done方法),执行结束后调用scheduleNext()方法循环往复。

到此,AsyncTask的源码就这样分析结束。

猜你喜欢

转载自blog.csdn.net/qq_30993595/article/details/80761574