HashMap 相关

1.HashMap 的原理,内部数据结构?

底层使用哈希表(数组加链表),当链表过长会将链表转成 红黑树 以实现0(logn)时间复杂度内查找

2.将下HashMap中put方法过程?

i.对key求hash值,然后再计算 下标

ii:如果没有碰撞,直接放入桶中

iii:如果碰撞了,以链表的方式连接到后面

iv:如果链表的长度超过阀值(TREEIFY_THRESHOLD==8),就把链表转成红黑树。

v:如果节点已经存在就替换旧值

vi:如果桶满了(容量*加载引子),就需要resize。

3.HashMap中hash函数怎么是实现?还有那些hash的实现方式?

i:高16bit不变,低16bit与高16bit做一个与或

ii: (n-1)&hash-->得到下标

iii:还有那些hash的实现方式:可以参考之前的博客 Effective java 学习笔记--hashcode()

4.hashmap如何解决冲突,讲一下扩容过程,加入一个值在原数组中,现在移动之后变为新数组,位置肯定改变了,那是什么定位到这个值新数组中的位置

。将新节点加到链表后

。容量扩充为原来的两倍,然后对每个节点重新计算hash值

。这个值只可能在两个地方,一个是原下标的地方,另一个是在下标为<原下标+原容量>的位置

5 抛开hashMap, hash冲突有哪些解决办法?

开放地址,链地址法

6.针对hashmap中的某个entry链太长,查找的时间复杂度可能达到O(n),怎么优化?

。 将链表转化为红黑树,JDK1.8 已经实现

数据在计算机中的存储结构(数据结构)

1.数组

2.链表

23树结构

 数组(ArrayList)



链表(linklist)

   双向链表 :查询效率低 增删效率高





HashMap 数组加链表


数组的表示


数组的初始化容量 最大容量 加载因子

/**
 * The default initial capacity - MUST be a power of two.
 */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

/**
 * The maximum capacity, used if a higher value is implicitly specified
 * by either of the constructors with arguments.
 * MUST be a power of two <= 1<<30.
 */
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
 * The load factor used when none specified in constructor.
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;


数组的大小可能不够用 :扩大

什么时候扩大: 16*0.72=12(原大小*加载因子) 数组扩大的标准  首次用到12的时候扩大

链表的长度可以无限变大吗?不可以  链表的长度超过treeify_threshold=8时 链表转化为红黑树

/**
 * The bin count threshold for using a tree rather than list for a
 * bin.  Bins are converted to trees when adding an element to a
 * bin with at least this many nodes. The value must be greater
 * than 2 and should be at least 8 to mesh with assumptions in
 * tree removal about conversion back to plain bins upon
 * shrinkage.
 */
static final int TREEIFY_THRESHOLD = 8;

链表和红黑树有各自最优效率的元素数量    当红黑树中的元素小于 untreeify_threshold=6时将转化回链表

/**
 * The bin count threshold for untreeifying a (split) bin during a
 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 * most 6 to mesh with shrinkage detection under removal.
 */
static final int UNTREEIFY_THRESHOLD = 6;




每次向数组中添加元素 都会记录已经使用的格子数量,当size大于 16*0.72=12(原大小*加载因子 数组扩大的标准)时 resize()




来了一个key,value组成了Node节点之后,这个节点到底该何去何从?

生产出一个算法 hash()算法

1,  返回一个 int类型的值

key,value ------>key(Object) 有个hashcode()方法得到key的hash值 :3254239

2,  0~15之间 数组大小的范围内

hash%16=0~15

3,尽可能利用数组的每一个位置


注意node节点的属性  key的hash, key,value,next下一个节点

/**
 * Basic hash bin node, used for most entries.  (See below for
 * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 */
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }

    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}

新来一个节点调用put()  根据hash(key)计算hash值(对hashCode()的值进行高十六位和低十六位运算)

在putval()中新节点的到来分为三种情况

1 table数组原来的位置为空

2 table数组原来的位置不为空,且下面是链表的结构

3 table数组原来的位置不为空,且下面是红黑树的结构

/**
 * Associates the specified value with the specified key in this map.
 * If the map previously contained a mapping for the key, the old
 * value is replaced.
 *
 * @param key key with which the specified value is to be associated
 * @param value value to be associated with the specified key
 * @return the previous value associated with <tt>key</tt>, or
 *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 *         (A <tt>null</tt> return can also indicate that the map
 *         previously associated <tt>null</tt> with <tt>key</tt>.)
 */
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
 
 
//取key的hashcode() 与 hashcode()的低十六位运算结果 做异或运算
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

 
 
/**
 * Implements Map.put and related methods
 *
 * @param hash hash for key
 * @param key the key
 * @param value the value to put
 * @param onlyIfAbsent if true, don't change existing value
 * @param evict if false, the table is in creation mode.
 * @return previous value, or null if none
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)//根据key的hash值计算该note节点在数组中的角标 判断该角标位数元素是否为空
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode))//table数组原来的位置不为空,且下面是红黑树的结构
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st// 链表的元素超过八个装换为红黑树 
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold) //超过12 则去扩容
        resize();
    afterNodeInsertion(evict);
    return null;
}


/**
 * Initializes or doubles table size. 初始化或扩容table数组的size  If null, allocates in
 * accord with initial capacity target held in field threshold.
 * Otherwise, because we are using power-of-two expansion, the
 * elements from each bin must either stay at same index, or move
 * with a power of two offset in the new table.
 *
 * @return the table
 */
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {//是否大于最大值
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold扩容两倍
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;//默认大小16
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//需扩容时的容量 16*0.75=12
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];//初始化一个默认大小16的node数组
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}


分析 

(n - 1) & hash

hash为 根据hash(key)计算hash的值(对hashCode()的值与hashCode()的低16位进行异或运算) 例 :3254239

n为数组初始化的长度16

即为 15&3254239  转化为 2进制 &运算           结果在0000到1111(0~15)之间



所以数组的大小永远是2的n次幂 以保证得到的结果在0到15之间

如何保证尽可能利用数组的每一个位置?

 需保证hash的值足够分散 对对hashCode()的值与hashCode()的低16位进行异或运算

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}









猜你喜欢

转载自blog.csdn.net/tengxvincent/article/details/80757885
今日推荐