【Caffe篇】--Caffe从入门到初始及各层介绍

一、前述

Caffe,全称Convolutional Architecture for Fast Feature Embedding。是一种常用的深度学习框架,主要应用在视频、图像处理方面的应用上。caffe是一个清晰,可读性高,快速的深度学习框架。作者是贾扬清,加州大学伯克利的ph.D,现就职于Facebook。caffe的官网是http://caffe.berkeleyvision.org/。

 二、具体

1、输入层

layer {
  name: "cifar"
  type: "Data"
  top: "data"  #一般用bottom表示输入,top表示输出,多个top代表有多个输出
  top: "label"
  include {
    phase: TRAIN #训练网络分为训练阶段和自测试阶段,如果没写include则表示该层即在测试中,又在训练中
  }
  transform_param {
    mean_file: "examples/cifar10/mean.binaryproto" #用一个配置文件来进行均值的操作
    transform_param {
    scale: 0.00390625
    mirror: 1  # 1表示开启镜像,0表示关闭,也可用ture和false来表示
    # 剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪
    crop_size: 227
  }
  }
  data_param {
    source: "examples/cifar10/cifar10_train_lmdb" #数据库来源
    batch_size: 64 #每次批处理的个数
    backend: LMDB #选用数据的名称
  }
}

### 使用LMDB源
layer {
  name: "mnist"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    scale: 0.00390625
  }
  data_param {
    source: "examples/mnist/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}

###使用HDF5数据源
layer {
  name: "data"
  type: "HDF5Data"
  top: "data"
  top: "label"
  hdf5_data_param {
    source: "examples/hdf5_classification/data/train.txt"
    batch_size: 10
  }
}

###数据直接来源与图片
#/path/to/images/img3423.jpg 2  
#/path/to/images/img3424.jpg 13  
#/path/to/images/img3425.jpg 8

layer {
  name: "data"
  type: "ImageData" #类型
  top: "data"
  top: "label"
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  image_data_param {
    source: "examples/_temp/file_list.txt"
    batch_size: 50
    new_height: 256 #如果设置就对图片进行resize操作
    new_width: 256
  }
}

 2、卷积层

layer {
  name: "conv1" #定义一个名字 必须指定的
  type: "Convolution"
  bottom: "data"#前面连接的层 data层
  top: "conv1"#输出是卷积层
  param {
    lr_mult: 1  #lr_mult: #当前层的学习率 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20 #卷积核(filter)的个数等于特征图的个数
    kernel_size: 5 #卷积核的大小 5*5*d  中的d是上一层的深度 
    stride: 1 #卷积核的步长,默认为1 
    pad: 0 #扩充边缘,默认为0,不扩充
    weight_filler {
      type: "xavier" #权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
    }
    bias_filler {
      type: "constant" #偏置项的初始化。一般设置为"constant",值全为0
    }
  }
}

输入:n*c0*w0*h0
输出:n*c1*w1*h1
其中,c1就是参数中的num_output,生成的特征图个数
 w1=(w0+2*pad-kernel_size)/stride+1;
 h1=(h0+2*pad-kernel_size)/stride+1;

结论:

假设输入时h*w k是kernel_size p 是padding s是stride则
特征图 的输出的h是多大的 (h-k+2p)/s+1
w是(w-k+2p)/s+1

3、池化层

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX #池化方法,默认为MAX。目前可用的方法有MAX, AVE
    kernel_size: 3 #池化的核大小
    stride: 2 #池化的步长,默认为1。一般我们设置为2,即不重叠。
  }
}

#pooling层的运算方法基本是和卷积层是一样的。

 4、激活函数层

#在激活层中,对输入数据进行激活操作,是逐元素进行运算的,在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。

###Sigmoid


layer {
  name: "test"
  bottom: "conv"
  top: "test"
  type: "Sigmoid"
}

#ReLU是目前使用最多的激活函数,主要因为其收敛更快,并且能保持同样效果。标准的ReLU函数为max(x, 0),当x>0时,输出x; 当x<=0时,输出0
f(x)=max(x,0)



layer {
  name: "relu1"
  type: "ReLU"
  bottom: "pool1"
  top: "pool1"
}

 5、全连接层

#全连接层,输出的是一个简单向量  参数跟卷积层一样
layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
#测试的时候输入准确率
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"#两个输入一个输入是分类结果
  bottom: "label"#另一个输入是label
  top: "accuracy"
  include {
    phase: TEST
  }
}

 6、softmax_layer

#softmax-loss layer:输出loss值 对于softmax 得到损失函数 -logp p为正确的分类的概率
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip1"
  bottom: "label"
  top: "loss"
}

#softmax layer: 输出似然值  得到每一个类别的概率值
layers {
  bottom: "cls3_fc"
  top: "prob"
  name: "prob"
  type: “Softmax"
}

猜你喜欢

转载自www.cnblogs.com/LHWorldBlog/p/9246684.html