【Pytorch】pytorch中保存模型的三种方式

【Pytorch】pytorch中保存模型的三种方式

1. torch保存模型相关的api

1.1 torch.save()

torch.save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)

参考自https://pytorch.org/docs/stable/generated/torch.save.html#torch-save

Image

torch.save()的功能是保存一个序列化的目标到磁盘当中,该函数使用了Python中的pickle库用于序列化,具体参数的解释如下

参数 功能
obj 需要保存的对象
f 指定保存的路径
pickle_module 用于 pickling 元数据和对象的模块
pickle_protocol 指定 pickle protocal 可以覆盖默认参数

常见用法

# dirctly save entiry model
torch.save('model.pth')
# save model'weights only
torch.save(model.state_dict(), 'model_weights.pth')
# save checkpoint
checkpint = {
    
    
	'model_state_dict': model.state_dict(),
	'optimizer_state_dict': optimizer.state_dict(),
	'loss': loss,
	'epoch': epoch
}
torch.save(checkpoint, 'checkpoint_path.pth')

1.2 torch.load()

torch.load(f, map_location=None, pickle_module=pickle, *, weights_only=False, mmap=None, **pickle_load_args)

参考自https://pytorch.org/docs/stable/generated/torch.load.html#torch-load

Image

torch.load()的功能是加载模型,使用python中的unpickle工具来反序列化对象,并且加载到对应的设备上,具体的参数解释如下

参数 功能
f 对象的存放路径
map_location 需要映射到的设备
pickle_module 用于 unpickling 元数据和对象的模块

常见用法

# specify the device to use
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# load entiry model to cuda if available
model = torch.load('whole_model.pth', map_location=device)
# load model's weight to cuda if available
model.load_state_dict(torch.load('model_weights.pth'), map_location=device)
# load checkpoint
checkpoint = torch.load('checkpoint_path.pth', map_location=device)
# checkpoint加载出来就像个字典,预先保存的是否放置了什么内容,加载之后就可以这样来获取
loss = checkpoint['loss']
epoch = chekpoint['epoch']
model.load_state_dict(checkpoint['model_state_dict']
optimizer.load_state_dict(checkpoint['optimizer_state_dict']


1.3 torch.nn.Module.load_state_dict()

torch.nn.Module.load_state_dict(state_dict, strict=True, assign=False)

参考自https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.load_state_dict

Image

torch.nn.Module.load_state_dict()将参数和缓冲区从 state_dict 复制到此模块及其后代中。 如果 strict 为 True,则 state_dict 的键必须与该模块的 state_dict() 函数返回的键完全匹配。具体的参数描述如下

参数 功能
state_dict 保存parameters和persistent buffers的字典
strict 是否强制要求state_dict中的key和model.state_dict返回的key严格一致

1.4 什么是state_dict()

torch.nn.Module.state_dict()

参考自https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.state_dict

Image

其实state_dict可以理解为一种简单的Python Dictionary,其功能是将每层之间的参数进行一一映射并且存储在python的数据类型字典中。因此state_dict可以轻松地进行修改、保存等操作。

除了torch.nn.Module拥有state_dict()方法之外,torch.optim.Optimizer也具有state_dict()方法。如下所示

torch.optim.Optimizer.state_dict()

参考自https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.state_dict.html

1.4. 1 举个例子
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim


class SimpleModel(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(input_size, 100)
        self.fc2 = nn.Linear(100, output_size)
    
    def forward(self, x):
        x = F.relu(self.fc1(x))
        return self.fc2(x)


if __name__ == "__main__":
    model = SimpleModel(10, 2)
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    print("Check Model's State Dict:")
    for key, value in model.state_dict().items():
        print(key, "\t", value.size())
    
    print("Check Optimizer's State Dict:")
    for key, value in optimizer.state_dict().items():
        print(key, "\t", value)

输出的结果如下

Check Model's State Dict:
fc1.weight       torch.Size([100, 10])
fc1.bias         torch.Size([100])
fc2.weight       torch.Size([2, 100])
fc2.bias         torch.Size([2])
Check Optimizer's State Dict:
state    {
    
    }
param_groups     [{
    
    'lr': 0.001, 'betas': (0.9, 0.999), 'eps': 1e-08, 'weight_decay': 0, 'amsgrad': False, 'maximize': False, 'foreach': None, 'capturable': False, 'differentiable': False, 'fused': None, 'params': [0, 1, 2, 3]}]

2. pytorch模型文件后缀

常用的torch模型文件后缀有.pt.pth,这是最常见的PyTorch模型文件后缀,表示模型的权重、结构和状态字典(state_dict)都被保存在其中。

torch.save(model.state_dict(), 'model_weights.pth')
torch.save(model, 'full_model.pt')

还有检查点后缀如.ckpt.checkpoint,这些后缀常被用于保存模型的检查点,包括权重和训练状态等。它们也可以表示模型的中间状态,以便在训练期间从中断的地方继续训练。

checkpoint = {
    
    
    'model_state_dict': model.state_dict(),
    'optimizer_state_dict': optimizer.state_dict(),
    'epoch': epoch,
    # 其他信息
}
torch.save(checkpoint, 'model_checkpoint.ckpt')

还有其他跨框架的数据结构例如.h5,PyTorch的模型也可以保存为HDF5文件格式用于跨框架的数据交换,可以使用h5py库来进行读写

import h5py

with h5py.File('model.h5', 'w') as f:
    # 将模型参数逐一保存到HDF5文件
    for name, param in model.named_parameters():
        f.create_dataset(name, data=param.numpy())

3. 存储整个模型

可以直接使用torch.save()torch.load()来加载和保存整个模型到文件中,这种方式保存了模型的所有权重、架构及其其他相关信息,即使不知道模型的结构也能够直接通过权重文件来加载模型

3.1 直接保存整个模型

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import os

class SimpleModel(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(input_size, 256)
        self.fc2 = nn.Linear(256, 256)
        self.fc3 = nn.Linear(256, output_size)
    
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return self.fc3(x)


if __name__ == "__main__":
    model = SimpleModel(10, 2)

    # specify the save path
    url = os.path.dirname(os.path.realpath(__file__)) + '/models/'
    # 如果路径不存在则创建
    if not os.path.exists(url):
        os.makedirs(url)
    # specify the model save name
    model_name = 'simple_model.pth'
    # save the model to file
    torch.save(model, url + model_name)

我们直接将模型保存到了当前文件夹下的./models文件夹中,

3.2 直接加载整个模型

由于我们已经保存了模型的所有相关信息,所以我们可以不知道模型的结构也能加载该模型,如下所示

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import os

class SimpleModel(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(input_size, 256)
        self.fc2 = nn.Linear(256, 256)
        self.fc3 = nn.Linear(256, output_size)
    
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return self.fc3(x)


if __name__ == "__main__":

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # model = SimpleModel(10, 2)

    # specify the save path
    url = os.path.dirname(os.path.realpath(__file__)) + '/models/'

    # 如果路径不存在则创建
    if not os.path.exists(url):
        os.makedirs(url)

    # specify the model save name
    model_name = 'simple_model.pth'
	
	# load the model
    if os.path.exists(url + model_name):
        model = torch.load(url + model_name, map_location=device)
        print("Success Load Model From:\n\t%s"%(url+model_name))

成功加载了模型


4. 只保存模型的权重

4.1 保存模型权重

利用前面提到的state_dict()方法来完成这一操作

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import os

class SimpleModel(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(input_size, 256)
        self.fc2 = nn.Linear(256, 256)
        self.fc3 = nn.Linear(256, output_size)
    
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return self.fc3(x)


if __name__ == "__main__":
	# specify device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = SimpleModel(10, 2)

    # specify the save path
    url = os.path.dirname(os.path.realpath(__file__)) + '/models/'

    # 如果路径不存在则创建
    if not os.path.exists(url):
        os.makedirs(url)

    # specify the model save name
    model_name = 'simple_model_weights.pth'

    torch.save(model.state_dict(), url + model_name)

我们直接将模型权重保存到了当前文件夹下的./models文件夹中,

4.2 读取模型权重

由于我们只保存了模型的权重信息,不知道模型的结构,所以必须要先实例化模型才行。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import os

class SimpleModel(nn.Module):
    def __init__(self, input_size, output_size):
        super(SimpleModel, self).__init__()
        self.fc1 = nn.Linear(input_size, 256)
        self.fc2 = nn.Linear(256, 256)
        self.fc3 = nn.Linear(256, output_size)
    
    def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        return self.fc3(x)


if __name__ == "__main__":
    # specify device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # get model
    model = SimpleModel(10, 2)

    # specify the save path
    url = os.path.dirname(os.path.realpath(__file__)) + '/models/'

    # 如果路径不存在则创建
    if not os.path.exists(url):
        os.makedirs(url)
    # specify the model save name
    model_name = 'simple_model_weights.pth'
    if os.path.exists(url + model_name):
        model.load_state_dict(torch.load(url + model_name, map_location=device))
        print("Success Load Model'weights From:\n\t%s"%(url+model_name))

5. 使用Checkpoint保存中间结果

5.1 保存Checkpoint

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import os

# 数据准备
x = torch.tensor(np.random.rand(100, 1), dtype=torch.float32)
y = 3 * x + 2 + 0.1 * torch.randn(100, 1)

# 定义模型
class SimpleLinearModel(nn.Module):
    def __init__(self):
        super(SimpleLinearModel, self).__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, x):
        return self.linear(x)

if __name__=="__main__":
    # specify device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # 实例化模型
    model = SimpleLinearModel()


    # 定义损失函数和优化器
    criterion = nn.MSELoss()
    optimizer = optim.SGD(model.parameters(), lr=0.01)

    # 训练循环
    num_epochs = 1000
    checkpoint_interval = 100  # 保存检查点的间隔
    url = os.path.dirname(os.path.realpath(__file__))+'/models/'
    if not os.path.exists(url):
        os.makedirs(url)
    checkpoint_file = 'checkpoint.pth'  # 检查点文件路径

    for epoch in range(num_epochs):
        # 前向传播
        outputs = model(x)
        loss = criterion(outputs, y)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        # 打印训练信息
        if (epoch + 1) % checkpoint_interval == 0:
            print(f'Epoch [{
      
      epoch+1}/{
      
      num_epochs}], Loss: {
      
      loss.item():.4f}')
            
            # 保存检查点
            checkpoint = {
    
    
                'epoch': epoch + 1,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'loss': loss.item(),
            }
            torch.save(checkpoint, url+checkpoint_file)

5.2 加载Checkpoint

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import os

# 数据准备
x = torch.tensor(np.random.rand(100, 1), dtype=torch.float32)
y = 3 * x + 2 + 0.1 * torch.randn(100, 1)

# 定义模型
class SimpleLinearModel(nn.Module):
    def __init__(self):
        super(SimpleLinearModel, self).__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, x):
        return self.linear(x)

if __name__=="__main__":
    # specify device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    # 实例化模型
    model = SimpleLinearModel()


    # 定义损失函数和优化器
    criterion = nn.MSELoss()
    optimizer = optim.SGD(model.parameters(), lr=0.01)

    # 训练循环
    num_epochs = 1000
    checkpoint_interval = 100  # 保存检查点的间隔
    url = os.path.dirname(os.path.realpath(__file__))+'/models/'
    if not os.path.exists(url):
        os.makedirs(url)
    checkpoint_file = 'checkpoint.pth'  # 检查点文件路径

    # load from checkpoint
    checkpoint = torch.load(url+checkpoint_file)
    for key, value in checkpoint.items():
        print(key, '-->', value)
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    epoch = checkpoint['epoch']
    loss = checkpoint['loss']
    print('Loaded checkpoint from epoch %d. Loss %f' % (epoch, loss))

输出如下

loss --> 0.01629752665758133
(test_ros_python) sjh@sjhR9000X:~/Documents/python_draft$  cd /home/sjh/Documents/python_draft ; /usr/bin/env /home/sjh/anaconda3/envs/metaRL/bin/python /home/sjh/.vscode/extensions/ms-python.python-2023.18.0/pythonFiles/lib/python/debugpy/adapter/../../debugpy/launcher 40897 -- /home/sjh/Documents/python_draft/check_checkpoint.py 
epoch --> 1000
model_state_dict --> OrderedDict([('linear.weight', tensor([[2.6938]])), ('linear.bias', tensor([2.1635]))])
optimizer_state_dict --> {
    
    'state': {
    
    0: {
    
    'momentum_buffer': None}, 1: {
    
    'momentum_buffer': None}}, 'param_groups': [{
    
    'lr': 0.01, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'differentiable': False, 'params': [0, 1]}]}
loss --> 0.01629752665758133
Loaded checkpoint from epoch 1000. Loss 0.016298

我们成功从断点处加载checkpoint, 可以再从这个断点处继续训练

Reference

参考一

猜你喜欢

转载自blog.csdn.net/qq_44940689/article/details/133824659
今日推荐