Android 笔记 View 的工作原理 (五)

1、ViewRoot 和DecorView

        ViewRoot 对应于 ViewRootImpl,是连接WindowManager 和DecorView 的纽带,View 的三大流程均是通过ViewRoot 来完成的。在ActivityThread 中,当Activity 对象被创建完毕后,会将DecorView 添加到 Window 中, 同时创建ViewRootImpl 对象,并将 ViewRootImpl 对象和DecorView 建立关联,这个过程可参考如下源码:


root = new ViewRootImpl(view.getContext(),display);
root.setView(view,wparams,panelParentView);

        View 的绘制流程是从 ViewRoot 的 performTraversals 方法开始的,它经过measure(测量)、layout(布局)、draw(绘制) 三个过程才最终将一个 View 绘制出来,performTraversals 的大致流程如下:


        如图所示,performTraversals 会依次调用 performMeasure、performLayout、performDraw 三个方法, 这三个方法分别完成顶级 View 的measure、layout、draw三个流程,其中 performMeasure 中会调用 measure 方法,在measure 方法中又会调用 onMeasure 方法,在 onMeasure 方法中会对所有的子元素进行 measure 过程,此时 measure 流程就从父容器传递到子元素中了,这样就完成了一次 measure 过程,接着子元素会重复父容器的 measure 过程,如此反复就完成了整个View 树的遍历。performLayout、performDraw 同理。


MeasureSpec:
MeasureSpec是一个32位的int值,高2位代表模式(SpecMode),低30位代表具体的值(SpecSize),为了提高并优化效率采用了位与运算。
MeasureSpce 源码:
    public static class MeasureSpec {
        private static final int MODE_SHIFT = 30;
        private static final int MODE_MASK  = 0x3 << MODE_SHIFT;

        /** @hide */
        @IntDef({UNSPECIFIED, EXACTLY, AT_MOST})
        @Retention(RetentionPolicy.SOURCE)
        public @interface MeasureSpecMode {}

        public static final int UNSPECIFIED = 0 << MODE_SHIFT;

        public static final int EXACTLY     = 1 << MODE_SHIFT;

        public static final int AT_MOST     = 2 << MODE_SHIFT;

        public static int makeMeasureSpec(@IntRange(from = 0, to = (1 << MeasureSpec.MODE_SHIFT) - 1) int size,
                                          @MeasureSpecMode int mode) {
            if (sUseBrokenMakeMeasureSpec) {
                return size + mode;
            } else {
                return (size & ~MODE_MASK) | (mode & MODE_MASK);
            }
        }


        public static int makeSafeMeasureSpec(int size, int mode) {
            if (sUseZeroUnspecifiedMeasureSpec && mode == UNSPECIFIED) {
                return 0;
            }
            return makeMeasureSpec(size, mode);
        }


        @MeasureSpecMode
        public static int getMode(int measureSpec) {
            //noinspection ResourceType
            return (measureSpec & MODE_MASK);
        }


        public static int getSize(int measureSpec) {
            return (measureSpec & ~MODE_MASK);
        }

        static int adjust(int measureSpec, int delta) {
            final int mode = getMode(measureSpec);
            int size = getSize(measureSpec);
            if (mode == UNSPECIFIED) {
                // No need to adjust size for UNSPECIFIED mode.
                return makeMeasureSpec(size, UNSPECIFIED);
            }
            size += delta;
            if (size < 0) {
                Log.e(VIEW_LOG_TAG, "MeasureSpec.adjust: new size would be negative! (" + size +
                        ") spec: " + toString(measureSpec) + " delta: " + delta);
                size = 0;
            }
            return makeMeasureSpec(size, mode);
        }

        /**
         * Returns a String representation of the specified measure
         * specification.
         *
         * @param measureSpec the measure specification to convert to a String
         * @return a String with the following format: "MeasureSpec: MODE SIZE"
         */
        public static String toString(int measureSpec) {
            int mode = getMode(measureSpec);
            int size = getSize(measureSpec);

            StringBuilder sb = new StringBuilder("MeasureSpec: ");

            if (mode == UNSPECIFIED)
                sb.append("UNSPECIFIED ");
            else if (mode == EXACTLY)
                sb.append("EXACTLY ");
            else if (mode == AT_MOST)
                sb.append("AT_MOST ");
            else
                sb.append(mode).append(" ");

            sb.append(size);
            return sb.toString();
        }
    }
测量模式(SpecMode)有三种,如下所示:
  • EXACTLY(精确测量): 对应布局中控件的 layout_width 或 layout_height 属性指定了具体的数值,指定为match_parent属性时的模式。
  • AT_MOST(最大值): 对应布局中控件的 layout_width 或 layout_height 属性指定为wrap_content时。
  • UNSPECIFIED(不确定):不指定View大小测量模式,View可以想多大就多大,这种情况一般用于系统内部,表示测量的状态。

        View 的默认 onMeasure()方法 只支持 EXACTLY 测量模式,该模式下不用重写 onMeasure() 方法,即 View 的宽高是精确的,如果是其它模式,则必须重写 onMeasure() 方法

        重写onMeaseur() 中会调用父类的 setMeasureDimension(int measuredWidth,int measureHeight)方法,将测量后的宽高设置进去,完成测量的工作。

1、MeasureSpec 和 LayoutParams 的关系:
        LayoutParams 需要和父容器一起才能决定View 的MeasureSpec,从而进一步决定View 的宽高。对于顶级View(即DecorView)和普通View来说,MeasureSpec 的转换过程略有不同。对于DecorView ,其MeasureSpec 由窗口尺寸和其自身的 LayoutParams 来共同确定;对于普通View 来说,其MeasureSpec 由父容器的 MeasureSpec 和自身的 LayoutParams 来共同决定, MeasureSpec 一旦确定后, onMeasure 中就可以确定 View 的测量宽高。

DecorView:
        在ViewRootImpl 中的 measureHierarchy 方法中的如下代码展示了 DecorView 的MeasureSpec 的创建过程,其中 desiredWindowWidth、desiredWindowHeight 是屏幕的尺寸

                childWidthMeasureSpec = getRootMeasureSpec(desiredWindowWidth, lp.width);
                childHeightMeasureSpec = getRootMeasureSpec(desiredWindowHeight, lp.height);
                performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);

接着看getRootMeasureSpec 方法的实现

    private static int getRootMeasureSpec(int windowSize, int rootDimension) {
        int measureSpec;
        switch (rootDimension) {

        case ViewGroup.LayoutParams.MATCH_PARENT:
            // Window can't resize. Force root view to be windowSize.
            measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY);
            break;
        case ViewGroup.LayoutParams.WRAP_CONTENT:
            // Window can resize. Set max size for root view.
            measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST);
            break;
        default:
            // Window wants to be an exact size. Force root view to be that size.
            measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY);
            break;
        }
        return measureSpec;
    }
由源码可知,DecorView 的MeasureSpec 的产生过程遵循如下规则,根据它的 LayoutParams 中的宽高的参数来划分:
  • LayoutParams.MATCH_PARENT:精确模式,大小就是窗口的大小
  • LayoutParams.WRAP_CONTENT:最大模式,大小不定,但不能超过窗口的大小
  • 固定大小(比如100dp):精确模式,大小为LayoutParams 中指定的大小

    对于普通View 来说,View 的measure过程由 ViewGroup 传递而来,先看下ViewGroup 的measureVhildWithMargins 方法:

    protected void measureChildWithMargins(View child,
            int parentWidthMeasureSpec, int widthUsed,
            int parentHeightMeasureSpec, int heightUsed) {
        final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams();

        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin
                        + widthUsed, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin
                        + heightUsed, lp.height);

        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    }

        从上述代码可知,子元素的MeasureSpec 的创建与父容器的 MeasureSpec 和子元素本身的 LayoutParams 有关,还和View 的 margin及 padding 有关,具体情况可以看一下ViewGroup 的 getChildMeasureSpec 方法,如下所示:

    public static int getChildMeasureSpec(int spec, int padding, int childDimension) {
        int specMode = MeasureSpec.getMode(spec);
        int specSize = MeasureSpec.getSize(spec);

        int size = Math.max(0, specSize - padding);

        int resultSize = 0;
        int resultMode = 0;

        switch (specMode) {
        // Parent has imposed an exact size on us
        case MeasureSpec.EXACTLY:
            if (childDimension >= 0) {
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size. So be it.
                resultSize = size;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent has imposed a maximum size on us
        case MeasureSpec.AT_MOST:
            if (childDimension >= 0) {
                // Child wants a specific size... so be it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size, but our size is not fixed.
                // Constrain child to not be bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size. It can't be
                // bigger than us.
                resultSize = size;
                resultMode = MeasureSpec.AT_MOST;
            }
            break;

        // Parent asked to see how big we want to be
        case MeasureSpec.UNSPECIFIED:
            if (childDimension >= 0) {
                // Child wants a specific size... let him have it
                resultSize = childDimension;
                resultMode = MeasureSpec.EXACTLY;
            } else if (childDimension == LayoutParams.MATCH_PARENT) {
                // Child wants to be our size... find out how big it should
                // be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            } else if (childDimension == LayoutParams.WRAP_CONTENT) {
                // Child wants to determine its own size.... find out how
                // big it should be
                resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size;
                resultMode = MeasureSpec.UNSPECIFIED;
            }
            break;
        }
        //noinspection ResourceType
        return MeasureSpec.makeMeasureSpec(resultSize, resultMode);
    }

        上述方法主要是根据父容器的MeasureSpec 同时结合View 自身的 LayoutParams 来确定子元素的 MeasureSpec,参数中 padding 是指父容器中已占用的空间大小,因此子元素的可用大小为父容器的尺寸减去 padding,具体代码如下所示:

        int specSize = MeasureSpec.getSize(spec);

        int size = Math.max(0, specSize - padding);
下表是针对 getChildMeasureSpec 的工作原理做的梳理,parentSize 是指父容器中目前可使用的大小

扫描二维码关注公众号,回复: 1694472 查看本文章

                                             表1 普通View 的 MeasureSpec 的创建规则

     
由表中可知,
  • 如果View 的宽高为精确值,则其大小为 LayoutParams 中的大小
  • 如果View 的宽高是 match_parent 时,View 的模式和父容器的模式一致,且其大小为父容器的剩余空间
  • 如果View 的宽高是 wrap_content 时,不管父容器为何种模式,View 都是最大模式,且其大小为父容器的剩余空间

View 的工作流程:
        View 的工作流程主要是指measure(测量)、layout(布局)、draw(绘制) 这三大流程,其中 measure 确定View 的测量宽高,layout 确定 View 的最终宽高和四个顶点的位置,draw 则将 View 绘制到屏幕上。


View 的 measure 过程
        View的 measure 过程由其 measure 方法来完成,measure 方法是一个 final 类型方法,在其中会调用Viw 的onMeasure 方法,onMeasure 方法如下所示:
  protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec),
                getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec));
    }

        在onMeasure 方法中,会调用setMeasuredDimension 方法设置View 宽高的测量值,其中getDefaultSize 方法如下所示:

   public static int getDefaultSize(int size, int measureSpec) {
        int result = size;
        int specMode = MeasureSpec.getMode(measureSpec);
        int specSize = MeasureSpec.getSize(measureSpec);

        switch (specMode) {
        case MeasureSpec.UNSPECIFIED:
            result = size;
            break;
        case MeasureSpec.AT_MOST:
        case MeasureSpec.EXACTLY:
            result = specSize;
            break;
        }
        return result;
    }

        由上可以看出,AT_MOST、EXACTLY 这两种情况下,getDefaultSize 方法返回的大小就是measureSpec 中的 specSize(就是View 测量后的大小),这里多次提到测量后的大小,是因为View 的最终大小是在layout 阶段确定的。

        UNSPECIFIED情况一般用于系统内部的测量过程,在这种情况下,View 的大小为 getDefaultSize  的第一个参数,即宽高分别为getSuggestedMinimumWidth、getSuggestedMinimumHeight 方法的返回值,它们的源码如下所示
 protected int getSuggestedMinimumWidth() {
        return (mBackground == null) ? mMinWidth : max(mMinWidth, mBackground.getMinimumWidth());
    }

protected int getSuggestedMinimumHeight() {
        return (mBackground == null) ? mMinHeight : max(mMinHeight, mBackground.getMinimumHeight());

    }

        从上述代码中可以看出,如果View 没有设置背景,则View 的宽度为 mMinWidth,而mMinWidth 对应于 android:minWidth 属性所制定的值,故View 的宽度即为  android:minWidth 属性所指定的值。如果这个属性不指定,则mMinWidth 默认为0;如果View指定了背景,则 View 的宽度为 max(mMinWidth, mBackground.getMinimumWidth())中的最大值,getMinimumWidth 的源码如下:
    public int getMinimumWidth() {
        final int intrinsicWidth = getIntrinsicWidth();
        return intrinsicWidth > 0 ? intrinsicWidth : 0;
    }
        getMinimumWidth 返回的就是Drawable 的原始宽度,前提是这个Drawable 有原始宽度,否则就返回0。
        Drawable 什么情况下由原始宽度?比如ShapeDrawable 无原始宽高,而BitmapDrawable 有原始宽高(图片的尺寸)
 总结:
        从getDefualSize 方法的实现来看,View 的宽高有specSize 决定,结合上述表1 普通View 的 MeasureSpec 的创建规则我们可以得出如下结论:
        直接继承View 的自定义控件需要重写 onMeasure 方法,并设置 wrap_content时的View 的自身大小,否则在布局中使用 wrap_content 就相当于使用 match_parent。
如何解决这个问题,代码如下:
    @Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        super.onMeasure(widthMeasureSpec, heightMeasureSpec);
        int widthSpecMode = MeasureSpec.getMode(widthMeasureSpec);
        int widthSpecSize = MeasureSpec.getSize(widthMeasureSpec);

        int heightSpecMode = MeasureSpec.getMode(heightMeasureSpec);
        int heightSpecSize = MeasureSpec.getSize(heightMeasureSpec);

        if (widthSpecMode == MeasureSpec.AT_MOST && heightSpecMode == MeasureSpec.AT_MOST) {
            setMeasuredDimension(mWidth, mHeigth);
        } else if (widthSpecMode == MeasureSpec.AT_MOST) {
            setMeasuredDimension(mWidth,heightSpecSize);
        } else if (heightSpecMode==MeasureSpec.AT_MOST) {
            setMeasuredDimension(widthSpecSize,mHeight);
        }
    }
        中mWidth、mHeight 为View 的默认宽高
ViewGroup 的 measure 过程其
       对于ViewGroup来说,不仅要完成自己的 measure 过程,还要遍历去调用所有子元素的 measure 方法,各个子元素再递归去执行这个过程。和View 不同的是,ViewGroup 是一个抽象类,没有重写View 的onMeasure 方法,但提供了一个叫 measureChildern 的方法,如下所示:
    protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) {
        final int size = mChildrenCount;
        final View[] children = mChildren;
        for (int i = 0; i < size; ++i) {
            final View child = children[i];
            if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
                measureChild(child, widthMeasureSpec, heightMeasureSpec);
            }
        }
    }

       从源码中可知,ViewGroup 在 measure 时,会对每一个子元素进行 measure,其中 measureChild 源码如下:

   protected void measureChild(View child, int parentWidthMeasureSpec,
            int parentHeightMeasureSpec) {
        final LayoutParams lp = child.getLayoutParams();

        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom, lp.height);

        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    }
        measureChild 的主要作用就是获取子元素的 LayoutParams,然后通过 getChildMeasureSpec 构建子元素的 MeasureSpec,最后将获取的 MeasureSpec 直接传递给View 的measure 方法进行测量。

        ViewGroup 并没有定义其测量的具体过程,这是因为ViewGroup 是一个抽象类,其测量过程的 onMeasure 方法需要各个子类去具体实现,比如LinearLayout、RelativeLayout等,因为不同的ViewGroup 子类具有不同的布局特性,这导致它们的测量细节各不相同,比如LinearLayout 和RelativeLayout 两者的布局特性明显不同,因此ViewGroup 无法统一实现onMeasure 方法。

下面是LinearLayout 的onMeasure 方法来分析ViewGroup 的measure 过程

LinearLayout 的onMeasure 方法:
    @Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        if (mOrientation == VERTICAL) {
            measureVertical(widthMeasureSpec, heightMeasureSpec);
        } else {
            measureHorizontal(widthMeasureSpec, heightMeasureSpec);
        }
    }

        上述代码是针对不同布局的不同测量方法, 我们选竖直布局的LinearLayout 的测量过程,即measureVertical 方法,如下:

  void measureVertical(int widthMeasureSpec, int heightMeasureSpec) {
         ...
        // See how tall everyone is. Also remember max width.
        for (int i = 0; i < count; ++i) {//遍历测量子元素
            final View child = getVirtualChildAt(i);
            if (child == null) {
                mTotalLength += measureNullChild(i);
                continue;
            }

            if (child.getVisibility() == View.GONE) {//子元素隐藏,跳过
               i += getChildrenSkipCount(child, i);
               continue;
            }

            nonSkippedChildCount++;
            if (hasDividerBeforeChildAt(i)) {//测量子元素之间的间隔
                mTotalLength += mDividerHeight;
            }

            final LayoutParams lp = (LayoutParams) child.getLayoutParams();//获取子元素的 LayoutParams

            totalWeight += lp.weight;

            final boolean useExcessSpace = lp.height == 0 && lp.weight > 0;
            
            //根据不同的测量模式获取子元素的高河竖直方向上的 margin
            if (heightMode == MeasureSpec.EXACTLY && useExcessSpace) {
               ...
            }else {
               ...
              measureChildBeforeLayout(child, i, widthMeasureSpec, 0,
              heightMeasureSpec, usedHeight);
               ...
        }

        //测量自己的大小
        // Add in our padding
        mTotalLength += mPaddingTop + mPaddingBottom;

        int heightSize = mTotalLength;

        // Check against our minimum height
        heightSize = Math.max(heightSize, getSuggestedMinimumHeight());

        ...

        maxWidth += mPaddingLeft + mPaddingRight;

        // Check against our minimum width
        maxWidth = Math.max(maxWidth, getSuggestedMinimumWidth());

        setMeasuredDimension(resolveSizeAndState(maxWidth, widthMeasureSpec, childState),
                heightSizeAndState);

        if (matchWidth) {
            forceUniformWidth(count, heightMeasureSpec);
        }
    }
      

        上述代码中可以看出,首先系统会遍历子元素并对每个子元素执行measureChildBeforeLayout方法,这个方法内部会调用子元素的measure 方法,这样各个子元素会依次进入自己的measure过程,系统会通过 mTotalLength 这个变量来存储 LinearLayout 在竖直方向上的高度,该高度为子元素的高度和竖直方向上的 margin等,测量完子元素后,LinearLayout 会根据子元素的情况测量自己的大小,同时根据LayoutParams 中布局模式,获取不同的高度总和,最终高度还需要考虑竖直方向上的 padding 值,此过程如下所示:

 public static int resolveSizeAndState(int size, int measureSpec, int childMeasuredState) {
        final int specMode = MeasureSpec.getMode(measureSpec);
        final int specSize = MeasureSpec.getSize(measureSpec);
        final int result;
        switch (specMode) {
            case MeasureSpec.AT_MOST:
                if (specSize < size) {
                    result = specSize | MEASURED_STATE_TOO_SMALL;
                } else {
                    result = size;
                }
                break;
            case MeasureSpec.EXACTLY:
                result = specSize;
                break;
            case MeasureSpec.UNSPECIFIED:
            default:
                result = size;
        }
        return result | (childMeasuredState & MEASURED_STATE_MASK);
    }
        View 的measure 过程是三大流程中最复杂的一个,measure 完成以后,通过getMeasureWidth/Height 方法可以正确的获取到View 的测量宽高。但是在某些极端的情况下,系统可能需要多次measure 才能确定最终的测量宽高,在这种情形下,在onMeasure 方法中拿到的测量宽高很可能是不准确的,建议在onLayout 中去获取 View 的测量宽高或最终宽高。

场景:比如我们想在Activity 已启动的时候就做一件任务,这个任务需要获取到某个View 的宽高。
          因为View 的measure 过程和 Activity 的生命周期方法不是同步执行的,因此无法保证Activity 执行了 onCreat、onStart、onResume 时某个View 已经测量完毕了,如果View 还没测量完毕,则获取的宽高就是0;故在Activity 的onCreat、onStart、onResume中无法正确的获取到View 的宽高,但可通过以下四种方法解决这个问题:

1)、Activity/View#onWindowFocusChange
        onWindowFocusChange 含义:View 已经初始化完毕,宽高已经准备好了,此时去获取View 的宽高是没问题的。但需注意,onWindowFocusChange 会被调用多次,当Activity 的窗口得到焦点和失去焦点时均会被调用一次。即当Activity 频繁的进行onResume 和 onPause时,onWindowFocusChange也会被频繁的调用,典型代码如下:
    @Override
    public void onWindowFocusChanged(boolean hasFocus) {
        super.onWindowFocusChanged(hasFocus);
        if (hasFocus) {
          int width = view.getMeasuredWidth();
          int height = view.getMeasuredHeight();
        }
    }

2)、view.post(runnable)
        通过 post 可以讲一个runnable 投递到消息队列的尾部,然后等待 Looper 调用此 runnable 的时候,View 也已经初始化好了,典型代码如下:
    @Override
    protected void onStart() {
        super.onStart();
        view.post(new Runnable() {
            @Override
            public void run() {
                int width = view.getMeasuredWidth();
                int height = view.getMeasuredHeight();
            }
        });
    }



3)、ViewTreeObserver
        使用 ViewTreeObserver 的总舵回调可以完成这个功能,比如使用 addOnGlobalLayoutListener 这个家口,当View 树的状态发生改变或者 View 树内部的View 可见性发生改变时,onGlobalLayout方法会被回调,因此这是获取 View 的宽高一个很好的时机。但需注意,伴随着View 树的状态改变等,onGlobalLayout 会被多次调用。典型代码如下所示:
    @Override
    protected void onStart() {
        super.onStart();
        ViewTreeObserver viewTreeObserver = view.getViewTreeObserver();
        viewTreeObserver.addOnGlobalLayoutListener(new ViewTreeObserver.OnGlobalLayoutListener() {
            @Override
            public void onGlobalLayout() {
                view.getViewTreeObserver().removeOnGlobalLayoutListener(this);
                int width = view.getMeasuredWidth();
                int height = view.getMeasuredHeight();
            }
        });
    }


4)、view.measure(int widthMeasureSpec, int heightMeasureSpec)
        通过手动对View 进行measure 来得到 View 的宽高,这种方法比较复杂,需要根据View 的LayoutParams 来分情况处理:
        match_parent
            直接放弃,无法measure 出具体的宽高,因为根据View 的measure 过程,如上表1 所述,构造此种MeasureSpec 需要知道 parentSize,即父容器的剩余空间,而这时我们无法知道parentSize 的大小,所以理论上不可能测量出 View 的大小。
        
        具体的数值(dp/px)
            比如宽高都是100 px,如下measure:
        int widthMeasureSpec  = MeasureSpec.makeMeasureSpec(100, MeasureSpec.EXACTLY);
        int heightMeasureSpec = MeasureSpec.makeMeasureSpec(100, MeasureSpec.EXACTLY);
        view.measure(widthMeasureSpec, heightMeasureSpec);

  wrap_content
            如下 measure:
        int widthMeasureSpec  = MeasureSpec.makeMeasureSpec((1<<30)-1, MeasureSpec.AT_MOST);
        int heightMeasureSpec = MeasureSpec.makeMeasureSpec((1<<30)-1, MeasureSpec.AT_MOST);
        view.measure(widthMeasureSpec, heightMeasureSpec);

        这里的 (1<<30)-1 是View的尺寸使用30位二进制表示,即最大值就是(1<<30)-1,在最大化模式下,我们使用理论上View能支持的最大值去构造MeasureSpec是合理的。

layout 过程:
        Layout 的作用是ViewGroup 用来确定子元素位置的,当 ViewGroup 的位置被确定为后,在它的onLayout 中会遍历所有的子元素并调用它们的 拉有方法,在layout 方法中又会调用自己的 onLayout方法,最终确定自身的位置,View 的layout 方法如下所示:

    @SuppressWarnings({"unchecked"})
    public void layout(int l, int t, int r, int b) {
        if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
            onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
            mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
        }

        int oldL = mLeft;
        int oldT = mTop;
        int oldB = mBottom;
        int oldR = mRight;
        //setFrame(l, t, r, b) 方法设定 View 的四个顶点
        boolean changed = isLayoutModeOptical(mParent) ?
                setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);

        if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
            onLayout(changed, l, t, r, b);//调用 onLayout 方法

            if (shouldDrawRoundScrollbar()) {
                if(mRoundScrollbarRenderer == null) {
                    mRoundScrollbarRenderer = new RoundScrollbarRenderer(this);
                }
            } else {
                mRoundScrollbarRenderer = null;
            }

            mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;

            ListenerInfo li = mListenerInfo;
            if (li != null && li.mOnLayoutChangeListeners != null) {
                ArrayList<OnLayoutChangeListener> listenersCopy =
                        (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
                int numListeners = listenersCopy.size();
                for (int i = 0; i < numListeners; ++i) {
                    listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
                }
            }
        }

        mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
        mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;

        if ((mPrivateFlags3 & PFLAG3_NOTIFY_AUTOFILL_ENTER_ON_LAYOUT) != 0) {
            mPrivateFlags3 &= ~PFLAG3_NOTIFY_AUTOFILL_ENTER_ON_LAYOUT;
            notifyEnterOrExitForAutoFillIfNeeded(true);
        }
    }

        layout 方法的大致流程如下:首先会通过 setFrame 方法来设置View 的四个顶点的位置,即初始化  mLeft 、mTop、mRight 、mBottom;
View 的四个顶点位置确定后,View 在父容器中的位置也就确定了。接着会调用onLayout 方法,这个方法的用途是父容器确定子元素的位置,它是一个抽象方法,它的具体实现和具体的布局有关。
        setFrame 源码:
 protected boolean setFrame(int left, int top, int right, int bottom) {
        boolean changed = false;

        if (DBG) {
            Log.d("View", this + " View.setFrame(" + left + "," + top + ","
                    + right + "," + bottom + ")");
        }

        if (mLeft != left || mRight != right || mTop != top || mBottom != bottom) {
            changed = true;

            // Remember our drawn bit
            int drawn = mPrivateFlags & PFLAG_DRAWN;

            int oldWidth = mRight - mLeft;
            int oldHeight = mBottom - mTop;
            int newWidth = right - left;
            int newHeight = bottom - top;
            boolean sizeChanged = (newWidth != oldWidth) || (newHeight != oldHeight);

            // Invalidate our old position
            invalidate(sizeChanged);
            //初始化赋值
            mLeft = left;
            mTop = top;
            mRight = right;
            mBottom = bottom;
            mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom);

            mPrivateFlags |= PFLAG_HAS_BOUNDS;


            if (sizeChanged) {
                sizeChange(newWidth, newHeight, oldWidth, oldHeight);
            }

            if ((mViewFlags & VISIBILITY_MASK) == VISIBLE || mGhostView != null) {
                // If we are visible, force the DRAWN bit to on so that
                // this invalidate will go through (at least to our parent).
                // This is because someone may have invalidated this view
                // before this call to setFrame came in, thereby clearing
                // the DRAWN bit.
                mPrivateFlags |= PFLAG_DRAWN;
                invalidate(sizeChanged);
                // parent display list may need to be recreated based on a change in the bounds
                // of any child
                invalidateParentCaches();
            }

            // Reset drawn bit to original value (invalidate turns it off)
            mPrivateFlags |= drawn;

            mBackgroundSizeChanged = true;
            mDefaultFocusHighlightSizeChanged = true;
            if (mForegroundInfo != null) {
                mForegroundInfo.mBoundsChanged = true;
            }

            notifySubtreeAccessibilityStateChangedIfNeeded();
        }
        return changed;
    }

        下面是LinearLayout 的 onLayout 方法:
    @Override
    protected void onLayout(boolean changed, int l, int t, int r, int b) {
        if (mOrientation == VERTICAL) {
            layoutVertical(l, t, r, b);
        } else {
            layoutHorizontal(l, t, r, b);
        }
    }

layoutVertical 的源码:

  void layoutVertical(int left, int top, int right, int bottom) {
        final int paddingLeft = mPaddingLeft;

        int childTop;
        int childLeft;

        // Where right end of child should go
        final int width = right - left;
        int childRight = width - mPaddingRight;

        // Space available for child
        int childSpace = width - paddingLeft - mPaddingRight;

        final int count = getVirtualChildCount();

        final int majorGravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK;
        final int minorGravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK;

        switch (majorGravity) {
           case Gravity.BOTTOM:
               // mTotalLength contains the padding already
               childTop = mPaddingTop + bottom - top - mTotalLength;
               break;

               // mTotalLength contains the padding already
           case Gravity.CENTER_VERTICAL:
               childTop = mPaddingTop + (bottom - top - mTotalLength) / 2;
               break;

           case Gravity.TOP:
           default:
               childTop = mPaddingTop;
               break;
        }
        //遍历子元素
        for (int i = 0; i < count; i++) {
            final View child = getVirtualChildAt(i);
            if (child == null) {
                childTop += measureNullChild(i);
            } else if (child.getVisibility() != GONE) {
                //子元素的宽高
                final int childWidth = child.getMeasuredWidth();
                final int childHeight = child.getMeasuredHeight();
                //获取子元素的 LayoutParams
                final LinearLayout.LayoutParams lp =
                        (LinearLayout.LayoutParams) child.getLayoutParams();

                int gravity = lp.gravity;
                if (gravity < 0) {
                    gravity = minorGravity;
                }
                final int layoutDirection = getLayoutDirection();
                final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
                switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
                    case Gravity.CENTER_HORIZONTAL:
                        childLeft = paddingLeft + ((childSpace - childWidth) / 2)
                                + lp.leftMargin - lp.rightMargin;
                        break;

                    case Gravity.RIGHT:
                        childLeft = childRight - childWidth - lp.rightMargin;
                        break;

                    case Gravity.LEFT:
                    default:
                        childLeft = paddingLeft + lp.leftMargin;
                        break;
                }

                if (hasDividerBeforeChildAt(i)) {
                    childTop += mDividerHeight;
                }
                
                childTop += lp.topMargin;
                //设置子元素的位置,内部会调用子元素的layou 方法
                setChildFrame(child, childLeft, childTop + getLocationOffset(child),
                        childWidth, childHeight);
                
                childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child);

                i += getChildrenSkipCount(child, i);
            }
        }
    }

        从上述代码中可看出,layoutVertical 首先会遍历所有子元素并调用setChildFrame 方法来为子元素指定位置,其中 childTop 会逐渐增大,意味着后面的子元素会被放置在靠下的位置,刚好符合竖直方向的LinearLayout 特性,同时setChildFrame 方法内部会调用子元素的 layout 方法,由前面可知,layout 方法会调用内部的 onLayout 方法来确定自己的位置,就这样一层层传递下去完成整个Viw 树的 layou过程。

setChildFrame源码:
    private void setChildFrame(View child, int left, int top, int width, int height) {
        child.layout(left, top, left + width, top + height);
    }

getWidth/getHeight 源码:

 @ViewDebug.ExportedProperty(category = "layout")
    public final int getWidth() {
        return mRight - mLeft;
    }

    /**
     * Return the height of your view.
     *
     * @return The height of your view, in pixels.
     */
    @ViewDebug.ExportedProperty(category = "layout")
    public final int getHeight() {
        return mBottom - mTop;
    }

        从源码我们可以得知,getWidth/getHeight 获取的值就是View 的测量宽高,但在某些情况下我们可以改变getWidth/getHeight  的返回值,如下所示:

    @Override
    protected void onLayout(boolean changed, int left, int top, int right, int bottom) {
        super.onLayout(changed, left, top, right+100, bottom+100);
    }
        这样我们通过getWidth/getHeight 获取的View 的宽高和View 测量的宽高就会不一致

Tip:getMeasuredWidth/getMeasuredHeight 和 getWidth/getHeight 的区别?
        getMeasuredWidth/getMeasuredHeight 在View 的 measure 流程中被赋值,getWidth/getHeight 在View 的layout 流程中被赋值,默认情况下两者的值相等,但在 layout 流程中可以改变View 的最终 宽高,


draw 过程
        draw过程的作用是将View 绘制到屏幕上,View 的绘制过程遵循如下几步:
  1. 绘制背景 background.draw(canvas)
  2. 会致自己 onDraw
  3. 绘制 children(dispatchDraw)
  4. 绘制装饰(onDrawForeground(canvas))
        这一点从draw 的源码可以看出,源码如下:

    public void draw(Canvas canvas) {
        final int privateFlags = mPrivateFlags;
        final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
                (mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
        mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;

        /*
         * Draw traversal performs several drawing steps which must be executed
         * in the appropriate order:
         *
         *      1. Draw the background
         *      2. If necessary, save the canvas' layers to prepare for fading
         *      3. Draw view's content
         *      4. Draw children
         *      5. If necessary, draw the fading edges and restore layers
         *      6. Draw decorations (scrollbars for instance)
         */

        // Step 1, draw the background, if needed
        int saveCount;

        if (!dirtyOpaque) {
            drawBackground(canvas);//绘制背景
        }

        // skip step 2 & 5 if possible (common case)
        final int viewFlags = mViewFlags;
        boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
        boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
        if (!verticalEdges && !horizontalEdges) {
            // Step 3, draw the content
            if (!dirtyOpaque) onDraw(canvas);//绘制自己

            // Step 4, draw the children
            dispatchDraw(canvas);//绘制子元素

            drawAutofilledHighlight(canvas);

            // Overlay is part of the content and draws beneath Foreground
            if (mOverlay != null && !mOverlay.isEmpty()) {
                mOverlay.getOverlayView().dispatchDraw(canvas);
            }

            // Step 6, draw decorations (foreground, scrollbars)
            onDrawForeground(canvas);//绘制装饰

            // Step 7, draw the default focus highlight
            drawDefaultFocusHighlight(canvas);

            if (debugDraw()) {
                debugDrawFocus(canvas);
            }

            // we're done...
            return;
        }

        /*
         * Here we do the full fledged routine...
         * (this is an uncommon case where speed matters less,
         * this is why we repeat some of the tests that have been
         * done above)
         */

        boolean drawTop = false;
        boolean drawBottom = false;
        boolean drawLeft = false;
        boolean drawRight = false;

        float topFadeStrength = 0.0f;
        float bottomFadeStrength = 0.0f;
        float leftFadeStrength = 0.0f;
        float rightFadeStrength = 0.0f;

        // Step 2, save the canvas' layers
        int paddingLeft = mPaddingLeft;

        final boolean offsetRequired = isPaddingOffsetRequired();
        if (offsetRequired) {
            paddingLeft += getLeftPaddingOffset();
        }

        int left = mScrollX + paddingLeft;
        int right = left + mRight - mLeft - mPaddingRight - paddingLeft;
        int top = mScrollY + getFadeTop(offsetRequired);
        int bottom = top + getFadeHeight(offsetRequired);

        if (offsetRequired) {
            right += getRightPaddingOffset();
            bottom += getBottomPaddingOffset();
        }

        final ScrollabilityCache scrollabilityCache = mScrollCache;
        final float fadeHeight = scrollabilityCache.fadingEdgeLength;
        int length = (int) fadeHeight;

        // clip the fade length if top and bottom fades overlap
        // overlapping fades produce odd-looking artifacts
        if (verticalEdges && (top + length > bottom - length)) {
            length = (bottom - top) / 2;
        }

        // also clip horizontal fades if necessary
        if (horizontalEdges && (left + length > right - length)) {
            length = (right - left) / 2;
        }

        if (verticalEdges) {
            topFadeStrength = Math.max(0.0f, Math.min(1.0f, getTopFadingEdgeStrength()));
            drawTop = topFadeStrength * fadeHeight > 1.0f;
            bottomFadeStrength = Math.max(0.0f, Math.min(1.0f, getBottomFadingEdgeStrength()));
            drawBottom = bottomFadeStrength * fadeHeight > 1.0f;
        }

        if (horizontalEdges) {
            leftFadeStrength = Math.max(0.0f, Math.min(1.0f, getLeftFadingEdgeStrength()));
            drawLeft = leftFadeStrength * fadeHeight > 1.0f;
            rightFadeStrength = Math.max(0.0f, Math.min(1.0f, getRightFadingEdgeStrength()));
            drawRight = rightFadeStrength * fadeHeight > 1.0f;
        }

        saveCount = canvas.getSaveCount();

        int solidColor = getSolidColor();
        if (solidColor == 0) {
            final int flags = Canvas.HAS_ALPHA_LAYER_SAVE_FLAG;

            if (drawTop) {
                canvas.saveLayer(left, top, right, top + length, null, flags);
            }

            if (drawBottom) {
                canvas.saveLayer(left, bottom - length, right, bottom, null, flags);
            }

            if (drawLeft) {
                canvas.saveLayer(left, top, left + length, bottom, null, flags);
            }

            if (drawRight) {
                canvas.saveLayer(right - length, top, right, bottom, null, flags);
            }
        } else {
            scrollabilityCache.setFadeColor(solidColor);
        }

        // Step 3, draw the content
        if (!dirtyOpaque) onDraw(canvas);

        // Step 4, draw the children
        dispatchDraw(canvas);

        // Step 5, draw the fade effect and restore layers
        final Paint p = scrollabilityCache.paint;
        final Matrix matrix = scrollabilityCache.matrix;
        final Shader fade = scrollabilityCache.shader;

        if (drawTop) {
            matrix.setScale(1, fadeHeight * topFadeStrength);
            matrix.postTranslate(left, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, top, right, top + length, p);
        }

        if (drawBottom) {
            matrix.setScale(1, fadeHeight * bottomFadeStrength);
            matrix.postRotate(180);
            matrix.postTranslate(left, bottom);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, bottom - length, right, bottom, p);
        }

        if (drawLeft) {
            matrix.setScale(1, fadeHeight * leftFadeStrength);
            matrix.postRotate(-90);
            matrix.postTranslate(left, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(left, top, left + length, bottom, p);
        }

        if (drawRight) {
            matrix.setScale(1, fadeHeight * rightFadeStrength);
            matrix.postRotate(90);
            matrix.postTranslate(right, top);
            fade.setLocalMatrix(matrix);
            p.setShader(fade);
            canvas.drawRect(right - length, top, right, bottom, p);
        }

        canvas.restoreToCount(saveCount);

        drawAutofilledHighlight(canvas);

        // Overlay is part of the content and draws beneath Foreground
        if (mOverlay != null && !mOverlay.isEmpty()) {
            mOverlay.getOverlayView().dispatchDraw(canvas);
        }

        // Step 6, draw decorations (foreground, scrollbars)
        onDrawForeground(canvas);

        if (debugDraw()) {
            debugDrawFocus(canvas);
        }
    }

        View 的绘制过程的传递是通过 dispatchDraw 来实现的,dispatchDraw 会遍历所有子元素的 draw 方法,如此 draw 事件就一层一层的传递下去。

        View 有一个特殊的方法,setWillNotDraw 源码如下:
    /**
     * If this view doesn't do any drawing on its own, set this flag to
     * allow further optimizations. By default, this flag is not set on
     * View, but could be set on some View subclasses such as ViewGroup.
     *
     * Typically, if you override {@link #onDraw(android.graphics.Canvas)}
     * you should clear this flag.
     *
     * @param willNotDraw whether or not this View draw on its own
     */
    public void setWillNotDraw(boolean willNotDraw) {
        setFlags(willNotDraw ? WILL_NOT_DRAW : 0, DRAW_MASK);
    }


        这个方法表示,如果一个View 不需要绘制任何内容,那么设置这个标记位为 true 后,系统会进行相应的优化。默认情况下,View 没有启用这个优化标记位,但是ViewGroup 会默认启用这个优化标记位。
        这个标记位对实际开发的意义是:当我们的自定义控件继承于 ViewGroup 并且本身不具备绘制功能时,就可以开启这个标记位从而便于系统进行后续的优化。当明确知道一个ViewGroup 需要通过onDraw 来绘制内容时,我们需要显示地关闭 WILL_NOT_DRAW 这个标记位。

猜你喜欢

转载自blog.csdn.net/daxiong25/article/details/80270163
今日推荐