Java中synchronized:特性、使用、锁机制与策略简析

synchronized的特性

互斥性

synchronized确保同一时间只有一个线程可以进入同步块或同步方法,避免了多线程并发访问共享资源的冲突问题。
synchronized 会起到互斥效果,某个线程执行到某个对象的 synchronized 中时, 其他线程如果也执行到同一个对象 synchronized 就会阻塞等待。
下面我们来看一个例子,两个线程获取同一个锁,锁被占用后,剩下的那个线程就会进行阻塞等待。

public class test2 {
    
    
    public static void main(String[] args) {
    
    
        Object object = new Object();
        Thread t1 =  new Thread(()->{
    
    
        //进入 synchronized 修饰的代码块, 相当于 加锁
          synchronized (object) {
    
    
              for (int i = 0; i < 5; i++) {
    
    
                  System.out.println("线程t1获取锁");
                  try {
    
    
                      Thread.sleep(1000);
                  } catch (InterruptedException e) {
    
    
                      throw new RuntimeException(e);
                  }
              }
          }
        //退出 synchronized 修饰的代码块, 相当于 解锁  
        });
        Thread t2 = new Thread(()->{
    
    
            synchronized (object) {
    
    
                for (int i = 0; i < 5; i++) {
    
    
                    System.out.println("线程特t2获取锁");
                    try {
    
    
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
    
    
                        throw new RuntimeException(e);
                    }
                }
            }
        });
        t1.start();
        t2.start();
    }
}

在这里插入图片描述
由结果我们可以知道,线程一释放锁后,由操作系统唤醒线程二才能获取到锁。

synchronized的底层是使用操作系统的mutex lock实现的。

可见性

内存可见性是指当一个线程修改了共享变量的值后,其他线程能够立即看到修改的值。在多线程环境中,由于多个线程同时访问共享变量,每个线程都有自己的工作内存,而工作内存中保存了主内存中的部分数据副本。因此,当一个线程修改了共享变量的值,但这个修改尚未被刷新到主内存时,其他线程可能无法立即看到这个修改,而继续使用自己工作内存中的旧值,造成了内存不可见性。

synchronized 既能保证原子性,也能保证内存可见性,一个线程对共享变量的修改对于其他线程是可见的。

class Counter {
    
    
    public static int flag = 0;
}

public class test3 {
    
    
    public static void main(String[] args) {
    
    
        Object object = new Object();
        Thread t1 = new Thread(() -> {
    
    
            while (true) {
    
    
                synchronized (object) {
    
    
                    if (Counter.flag != 0) {
    
    
                        break;
                    }
                }
            }
            System.out.println("线程一知道了共享变量改为" + Counter.flag);
        });
        Thread t2 = new Thread(() -> {
    
    
            Scanner scanner = new Scanner(System.in);
            System.out.println("输入一个整数:");
            Counter.flag = scanner.nextInt();
        });
        t1.start();
        t2.start();
    }
}

在这里插入图片描述
如果线程一不加synchronized,那么共享变量的改变它就感知不到,以至于程序一直在运行中。
在这里插入图片描述

可重入性

synchronized 同步块对同一条线程来说是可重入的,不会出现自己把自己锁死的问题。
可以理解为一个线程没有释放锁,然后又尝试再次加锁。
按照之前对锁的理解就是,锁没有释放,进行再次加锁就会进行阻塞,直到第一次的锁被释放,才能获取到第二个锁,但释放第一个锁也由该线程来进行,结果现在这个线程啥都干不了,也就只能形成死锁了。
这样的锁称其为不可重入锁。

我们的synchronized是可重入锁。
在重入锁的内部有两个信息,分别为“程序计数器”和“线程持有者”

  • 如果某个线程加锁的时候,发现锁已经被人占用,但是恰好占用的正是自己, 那么仍然可以继续获取到锁,并让计数器自增。
  • 解锁的时候计数器递减为 0 的时候,才真正释放锁。

synchronized的使用方法

  1. 直接修饰普通方法: 锁的 SynchronizedDemo 对象
public synchronized void methond() {
    
    
}
  1. 修饰静态方法: 锁的 SynchronizedDemo 类的对象
public synchronized static void method() {
    
    
}
  1. 修饰代码块: 明确指定锁哪个对象
  • 锁当前对象
public void method() {
    
    
synchronized (this) {
    
    
}
}
  • 锁类对象
public void method() {
    
    
synchronized (SynchronizedDemo.class) {
    
    
}
}

synchronized的锁机制

  1. 对象锁:可以将synchronized关键字直接应用于实例方法或实例代码块上。当一个线程进入被synchronized修饰的实例方法或实例代码块时,它会自动获取该对象的内置锁。只有当线程释放锁之后,其他线程才能进入同步块。

  2. 类锁:可以将synchronized关键字应用于静态方法或类代码块上。当一个线程进入被synchronized修饰的静态方法或类代码块时,它会自动获取该类的Class对象的内置锁。类锁是属于整个类的,对于同一个类的不同实例,他们共享同一个类锁。

  3. 锁对象:可以使用synchronized关键字加锁指定的对象。通过指定一个对象作为锁,多个线程可以根据这个对象来实现同步。当一个线程进入synchronized代码块时,它会尝试获取指定对象的内置锁,只有当线程释放锁之后,其他线程才能获得锁并执行同步代码。

常见锁策略

乐观锁与悲观锁

悲观锁是在数据被使用前加锁,防止数据被其他线程修改。
乐观锁则是在更新数据时检查数据是否被其他线程修改过,如果没有则更新成功,否则返回失败。
Synchronized 初始使用乐观锁策略,当发现锁竞争比较频繁的时候, 就会自动切换成悲观锁策略。

重量级锁与轻量级锁

轻量级锁是一种优化的锁,它在CAS操作时使用CPU的自旋机制,如果自旋成功则获取到锁,否则进入睡眠状态。
重量级锁是一种传统的锁,它依赖于操作系统的MutexLock(互斥锁)来实现,当有多个线程竞争同一个锁时,会阻塞其他线程等待释放。

公平锁与非公平锁

假设有A,B,C三个线程依次进行同一把锁的获取,线程A获取成功了,线程B与C获取失败。
等待线程A释放锁后,线程B与C,如何获取锁在这里插入图片描述
公平锁策略: 遵守 “先来后到”。B 比 C 先来的。当 A 释放锁的之后,B 就能先于 C 获取到锁。
非公平锁策略:不遵守 “先来后到”。B 和 C 都有可能获取到锁。
synchronized 是非公平锁

可重入锁与不可重入锁

可重入锁的意思就是允许同一个线程多次获取同一把锁。
Java里只要以Reentrant开头命名的锁都是可重入锁,而且JDK提供的所有现成的Lock实现类,包括synchronized关键字锁都是可重入的。
可以理解为一个线程没有释放锁,然后又尝试再次加锁。
按照之前对锁的理解就是,锁没有释放,进行再次加锁就会进行阻塞,直到第一次的锁被释放,才能获取到第二个锁,但释放第一个锁也由该线程来进行,结果现在这个线程啥都干不了,也就只能形成死锁了。
这样的锁称其为不可重入锁。

synchronized 是可重入锁

自旋锁

为防止线程在抢锁失败后进入阻塞状态,经过很久才能再次被调度的情况。

while (!locked.compareAndSet(false, true)) {
    
    
            // 不断循环直到获取到锁
        }

如果获取锁失败,立即再尝试获取锁, 无限循环,直到获取到锁为止。 第一次获取锁失败, 第二次的尝试会在极短的时间内到来。
缺点:如果锁被其他线程持有的时间比较久, 那么就会持续的消耗 CPU 资源。
synchronized 中的轻量级锁策略大概率就是通过自旋锁的方式实现的

读写锁

一个线程对于数据的访问, 主要存在两种操作: 读数据 和 写数据.

  • 两个线程都只是读一个数据, 此时并没有线程安全问题. 直接并发的读取即可.

  • 两个线程都要写一个数据, 有线程安全问题.

  • 一个线程读另外一个线程写, 也有线程安全问题.

    读写锁就是把读操作和写操作区分对待。 Java 标准库提供了ReentrantReadWriteLock 类,实现了读写锁。

  • ReentrantReadWriteLock.ReadLock 类表示一个读锁。这个对象提供了 lock / unlock 方法进行加锁解锁。

  • ReentrantReadWriteLock.WriteLock 类表示一个写锁。 这个对象也提供了 lock / unlock 方法进行加锁解锁

读加锁和读加锁之间, 不互斥.
写加锁和写加锁之间, 互斥.
读加锁和写加锁之间, 互斥

Synchronized 不是读写锁

想了解更多也可以看我的笔记专栏哈哈在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/st200112266/article/details/133100680