javaSE复习--数组

宋红康老师

01-数组概述与一维数组的基本使用


1. 数组的理解(Array)

概念:是多个相同类型数据按一定顺序排列的集合,并使用一个名字命名,并通过编号的方式对这些数据进行统一管理。

简称:多个数据的组合

Java中的容器:数组、集合框架(第12章):在内存中对多个数据的存储。

2. 几个相关的概念
> 数组名
> 数组的元素(即内部存储的多个元素)
> 数组的下标、角标、下角标、索引、index(即找到指定数组元素所使用的编号)
> 数组的长度(即数组容器中存储的元素的个数)

3. 数组的特点:
> 数组中的元素在内存中是依次紧密排列的,有序的。
> 数组,属于引用数据类型的变量。数组的元素,既可以是基本数据类型,也可以引用数据类型。
> 数组,一旦初始化完成,其长度就确定了,并且其长度不可更改。
> 创建数组对象会在内存中开辟一整块`连续的空间`。占据的空间的大小,取决于数组的长度和数组中元素的类型。


4. 复习:变量按照数据类型的分类
4.1 基本数据类型:byte \ short \ int \ long ;float \ double ; char \ boolean
4.2 引用数据类型:类、数组、接口、枚举、注解、记录


5. 数组的分类
5.1 按照元素的类型:基本数据类型元素的数组;引用数据类型元素的数组
5.2 按照数组的维数来分:一维数组;二维数组;.....



6. 一维数组的使用(6个基本点)
> 数组的声明和初始化
> 调用数组的指定元素
> 数组的属性:length,表示数组的长度
> 数组的遍历
> 数组元素的默认初始化值
> 一维数组的内存解析(难)


7. 数组元素的默认初始化值的情况
注意:以数组的动态初始化方式为例说明。

> 整型数组元素的默认初始化值:0
> 浮点型数组元素的默认初始化值:0.0
> 字符型数组元素的默认初始化值:0 (或理解为'\u0000')
> boolean型数组元素的默认初始化值:false
> 引用数据类型数组元素的默认初始化值:null


8. 一维数组的内存解析
8.1 Java中的内存结构是如何划分的?(主要关心JVM的运行时内存环境)
> 将内存区域划分为5个部分:程序计数器、虚拟机栈、本地方法栈、堆、方法区

> 与目前数组相关的内存结构:   比如:int[] arr = new int[]{1,2,3};
    > 虚拟机栈:用于存放方法中声明的变量。比如:arr
    > 堆:用于存放数组的实体(即数组中的所有元素)。比如:1,2,3

8.2 举例:具体一维数组的代码的内存解析

1. 数组的概述


1.1 为什么需要数组

需求分析1:

需要统计某公司50个员工的工资情况,例如计算平均工资、找到最高工资等。用之前知识,首先需要声明50个变量来分别记录每位员工的工资,这样会很麻烦。因此我们可以将所有的数据全部存储到一个容器中统一管理,并使用容器进行计算。

需求分析2:

容器的概念:

  • 生活中的容器:水杯(装水等液体),衣柜(装衣服等物品),集装箱(装货物等)。

  • 程序中的容器:将多个数据存储到一起,每个数据称为该容器的元素。

1.2 数组的概念

  • 数组(Array),是多个相同类型数据按一定顺序排列的集合,并使用一个名字命名,并通过编号的方式对这些数据进行统一管理。

  • 数组中的概念

  • 数组名

  • 下标(或索引)

  • 元素

  • 数组的长度

数组的特点:

  • 数组本身是引用数据类型,而数组中的元素可以是任何数据类型,包括基本数据类型和引用数据类型。

  • 创建数组对象会在内存中开辟一整块连续的空间。占据的空间的大小,取决于数组的长度和数组中元素的类型。

  • 数组中的元素在内存中是依次紧密排列的,有序的。

  • 数组,一旦初始化完成,其长度就是确定的。数组的长度一旦确定,就不能修改。

  • 我们可以直接通过下标(或索引)的方式调用指定位置的元素,速度很快。

  • 数组名中引用的是这块连续空间的首地址。

1.3 数组的分类

1、按照元素类型分:

  • 基本数据类型元素的数组:每个元素位置存储基本数据类型的值

  • 引用数据类型元素的数组:每个元素位置存储对象(本质是存储对象的首地址)(在面向对象部分讲解)

2、按照维度分:

  • 一维数组:存储一组数据

  • 二维数组:存储多组数据,相当于二维表,一行代表一组数据,只是这里的二维表每一行长度不要求一样。

2. 一维数组的使用


2.1 一维数组的声明

格式:

//推荐
元素的数据类型[] 一维数组的名称;

//不推荐
元素的数据类型  一维数组名[];

举例:

int[] arr;
int arr1[];
double[] arr2;
String[] arr3;  //引用类型变量数组

数组的声明,需要明确:

(1)数组的维度:在Java中数组的符号是[],[]表示一维,[][]表示二维。

(2)数组的元素类型:即创建的数组容器可以存储什么数据类型的数据。元素的类型可以是任意的Java的数据类型。例如:int、String、Student等。

(3)数组名:就是代表某个数组的标识符,数组名其实也是变量名,按照变量的命名规范来命名。数组名是个引用数据类型的变量,因为它代表一组数据。

举例:

public class ArrayTest1 {
    public static void main(String[] args) {
        //比如,要存储一个小组的成绩
        int[] scores;
        int grades[];
//        System.out.println(scores);//未初始化不能使用

        //比如,要存储一组字母
        char[] letters;

        //比如,要存储一组姓名
        String[] names;

        //比如,要存储一组价格
        double[] prices;

    }
}

注意:Java语言中声明数组时不能指定其长度(数组中元素的个数)。 例如: int a[5]; //非法

2.2 一维数组的初始化

2.2.1 静态初始化

  • 如果数组变量的初始化和数组元素的赋值操作同时进行,那就称为静态初始化。

  • 静态初始化,本质是用静态数据(编译时已知)为数组初始化。此时数组的长度由静态数据的个数决定。

  • 一维数组声明和静态初始化格式1:

数据类型[] 数组名 = new 数据类型[]{元素1,元素2,元素3,...};

或
    
数据类型[] 数组名;
数组名 = new 数据类型[]{元素1,元素2,元素3,...};
  • new:关键字,创建数组使用的关键字。因为数组本身是引用数据类型,所以要用new创建数组实体。

例如,定义存储1,2,3,4,5整数的数组容器。

int[] arr = new int[]{1,2,3,4,5};//正确
//或
int[] arr;
arr = new int[]{1,2,3,4,5};//正确
  • 一维数组声明和静态初始化格式2:

数据类型[] 数组名 = {元素1,元素2,元素3...};//必须在一个语句中完成,不能分成两个语句写

例如,定义存储1,2,3,4,5整数的数组容器

int[] arr = {1,2,3,4,5};//正确

int[] arr;
arr = {1,2,3,4,5};//错误

举例:

public class ArrayTest2 {
    public static void main(String[] args) {
        int[] arr = {1,2,3,4,5};//右边不需要写new int[]

        int[] nums;
        nums = new int[]{10,20,30,40}; //声明和初始化在两个语句完成,就不能使用new int[]

        char[] word = {'h','e','l','l','o'};

        String[] heros = {"袁隆平","邓稼先","钱学森"};

        System.out.println("arr数组:" + arr);//arr数组:[I@1b6d3586
        System.out.println("nums数组:" + nums);//nums数组:[I@4554617c
        System.out.println("word数组:" + word);//word数组:[C@74a14482
        System.out.println("heros数组:" + heros);//heros数组:[Ljava.lang.String;@1540e19d
    }
}

2.2.2 动态初始化

数组变量的初始化和数组元素的赋值操作分开进行,即为动态初始化。

动态初始化中,只确定了元素的个数(即数组的长度),而元素值此时只是默认值,还并未真正赋自己期望的值。真正期望的数据需要后续单独一个一个赋值。

格式:

数组存储的元素的数据类型[] 数组名字 = new 数组存储的元素的数据类型[长度];

或

数组存储的数据类型[] 数组名字;
数组名字 = new 数组存储的数据类型[长度];
  • [长度]:数组的长度,表示数组容器中可以最多存储多少个元素。

  • 注意:数组有定长特性,长度一旦指定,不可更改。和水杯道理相同,买了一个2升的水杯,总容量就是2升是固定的。

举例1:正确写法

int[] arr = new int[5];

int[] arr;
arr = new int[5];

举例2:错误写法

int[] arr = new int[5]{1,2,3,4,5};//错误的,后面有{}指定元素列表,就不需要在[]中指定元素个数了。

2.3 一维数组的使用

2.3.1 数组的长度

  • 数组的元素总个数,即数组的长度

  • 每个数组都有一个属性length指明它的长度,例如:arr.length 指明数组arr的长度(即元素个数)

  • 每个数组都具有长度,而且一旦初始化,其长度就是确定,且是不可变的。

2.3.2 数组元素的引用

如何表示数组中的一个元素?

每一个存储到数组的元素,都会自动的拥有一个编号,从0开始,这个自动编号称为数组索引(index)或下标,可以通过数组的索引/下标访问到数组中的元素。

数组名[索引/下标]

数组的下标范围?

Java中数组的下标从[0]开始,下标范围是[0, 数组的长度-1],即[0, 数组名.length-1]

数组元素下标可以是整型常量或整型表达式。如a[3] , b[i] , c[6*i];

举例

 publicclassArrayTest3 {
     publicstaticvoidmain(String[] args) {
         int[] arr= {1,2,3,4,5};
 ​
         System.out.println("arr数组的长度:"+arr.length);
         System.out.println("arr数组的第1个元素:"+arr[0]);//下标从0开始
         System.out.println("arr数组的第2个元素:"+arr[1]);
         System.out.println("arr数组的第3个元素:"+arr[2]);
         System.out.println("arr数组的第4个元素:"+arr[3]);
         System.out.println("arr数组的第5个元素:"+arr[4]);
 ​
         //修改第1个元素的值
         //此处arr[0]相当于一个int类型的变量
         arr[0] =100;
         System.out.println("arr数组的第1个元素:"+arr[0]);
     }
 }

2.4 一维数组的遍历

将数组中的每个元素分别获取出来,就是遍历。for循环与数组的遍历是绝配。

举例1

 publicclassArrayTest4 {
     publicstaticvoidmain(String[] args) {
         int[] arr=newint[]{1,2,3,4,5};
         //打印数组的属性,输出结果是5
         System.out.println("数组的长度:"+arr.length);
 ​
         //遍历输出数组中的元素
         System.out.println("数组的元素有:");
         for(inti=0; i<arr.length; i++){
             System.out.println(arr[i]);
         }
     }
 }

举例2

 publicclassArrayTest5 {
     publicstaticvoidmain(String[] args) {
         int[] arr=newint[5];
 ​
         System.out.println("arr数组的长度:"+arr.length);
         System.out.print("存储数据到arr数组之前:[");
         for (inti=0; i<arr.length; i++) {
             if(i==0){
                 System.out.print(arr[i]);
             }else{
                 System.out.print(","+arr[i]);
             }
         }
         System.out.println("]");
 ​
         //初始化
        /* 
        arr[0] = 2;
         arr[1] = 4;
         arr[2] = 6;
         arr[3] = 8;
         arr[4] = 10;
         */
 ​
         for (inti=0; i<arr.length; i++) {
             arr[i] = (i+1) *2;
         }
 ​
         System.out.print("存储数据到arr数组之后:[");
         for (inti=0; i<arr.length; i++) {
             if(i==0){
                 System.out.print(arr[i]);
             }else{
                 System.out.print(","+arr[i]);
             }
         }
         System.out.println("]");
     }
 }

2.5 数组元素的默认值

数组是引用类型,当我们使用动态初始化方式创建数组时,元素值只是默认值。例如:

 publicclassArrayTest6 {
     publicstaticvoidmain(Stringargv[]){
         inta[]=newint[5]; 
         System.out.println(a[3]); //a[3]的默认值为0
     }
 } 

对于基本数据类型而言,默认初始化值各有不同。

对于引用数据类型而言,默认初始化值为null(注意与0不同!)

public class ArrayTest7 {
    public static void main(String[] args) {
        //存储26个字母
        char[] letters = new char[26];
        System.out.println("letters数组的长度:" + letters.length);
        System.out.print("存储字母到letters数组之前:[");
        for (int i = 0; i < letters.length; i++) {
            if(i==0){
                System.out.print(letters[i]);
            }else{
                System.out.print("," + letters[i]);
            }
        }
        System.out.println("]");

       //存储5个姓名
        String[] names = new String[5];
        System.out.println("names数组的长度:" + names.length);
        System.out.print("存储姓名到names数组之前:[");
        for (int i = 0; i < names.length; i++) {
            if(i==0){
                System.out.print(names[i]);
            }else{
                System.out.print("," + names[i]);
            }
        }
        System.out.println("]");
    }
}

3. 一维数组内存分析


3.1 Java虚拟机的内存划分

为了提高运算效率,就对空间进行了不同区域的划分,因为每一片区域都有特定的处理数据方式和内存管理方式。

区域名称

作用

虚拟机栈

用于存储正在执行的每个Java方法的局部变量表等。局部变量表存放了编译期可知长度的各种基本数据类型、对象引用,方法执行完,自动释放。

堆内存

存储对象(包括数组对象),new来创建的,都存储在堆内存。

方法区

存储已被虚拟机加载的类信息、常量、(静态变量)、即时编译器编译后的代码等数据。

本地方法栈

当程序中调用了native的本地方法时,本地方法执行期间的内存区域

程序计数器

程序计数器是CPU中的寄存器,它包含每一个线程下一条要执行的指令的地址

3.2 一维数组在内存中的存储

1、一个一维数组内存图

public static void main(String[] args) {
  int[] arr = new int[3];
  System.out.println(arr);//[I@5f150435
}

2、数组下标为什么是0开始

因为第一个元素距离数组首地址间隔0个单元格。

3、两个一维数组内存图

两个数组独立

public static void main(String[] args) {
    int[] arr = new int[3];
    int[] arr2 = new int[2];
    System.out.println(arr);
    System.out.println(arr2);
}

4、两个变量指向一个一维数组

两个数组变量本质上代表同一个数组。

public static void main(String[] args) {
    // 定义数组,存储3个元素
    int[] arr = new int[3];
    //数组索引进行赋值
    arr[0] = 5;
    arr[1] = 6;
    arr[2] = 7;
    //输出3个索引上的元素值
    System.out.println(arr[0]);
    System.out.println(arr[1]);
    System.out.println(arr[2]);
    //定义数组变量arr2,将arr的地址赋值给arr2
    int[] arr2 = arr;
    arr2[1] = 9;
    System.out.println(arr[1]);
}

4. 一维数组的应用


案例1:升景坊单间短期出租4个月,550元/月(水电煤公摊,网费35元/月),空调、卫生间、厨房齐全。屋内均是IT行业人士,喜欢安静。所以要求来租者最好是同行或者刚毕业的年轻人,爱干净、安静。

public class ArrayTest {
      public static void main(String[] args) {
      int[] arr = new int[]{8,2,1,0,3};
      int[] index = new int[]{2,0,3,2,4,0,1,3,2,3,3};
      String tel = "";
      for(int i = 0;i < index.length;i++){
            tel += arr[index[i]];
      }
      System.out.println("联系方式:" + tel);
      }
}

案例2:输出英文星期几

用一个数组,保存星期一到星期天的7个英语单词,从键盘输入1-7,显示对应的单词{"Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"}

import java.util.Scanner;

/**
 * @author 尚硅谷-宋红康
 * @create 14:37
 */
public class WeekArrayTest {
    public static void main(String[] args) {

        //1. 声明并初始化星期的数组
        String[] weeks = {"Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"};

        //2. 使用Scanner从键盘获取1-7范围的整数
        Scanner scanner = new Scanner(System.in);
        System.out.println("请输入[1-7]范围的整数:");
        int number = scanner.nextInt();

        if(number < 1 || number > 7){
            System.out.println("你输入的输入非法");
        }else{

            //3. 根据输入的整数,到数组中相应的索引位置获取指定的元素(即:星期几)
            System.out.println("对应的星期为:" + weeks[number - 1]);

        }
        
        scanner.close();

    }
}

例3:从键盘读入学生成绩,找出最高分,并输出学生成绩等级。

  • 成绩>=最高分-10 等级为’A’

  • 成绩>=最高分-20 等级为’B’

  • 成绩>=最高分-30 等级为’C’

  • 其余 等级为’D’

提示:先读入学生人数,根据人数创建int数组,存放学生成绩。

/**
 * @author 尚硅谷-宋红康
 * @create 14:55
 */
public class ScoreTest1 {
    public static void main(String[] args) {

        //1. 根据提示,获取学生人数
        System.out.print("请输入学生人数:");
        Scanner scanner = new Scanner(System.in);
        int count = scanner.nextInt();

        //2. 根据学生人数,创建指定长度的数组 (使用动态初始化)
        int[] scores = new int[count];

        //3. 使用循环,依次给数组的元素赋值
        int maxScore = 0; //记录最高分
        System.out.println("请输入" + count + "个成绩");
        for (int i = 0; i < scores.length; i++) {
            scores[i] = scanner.nextInt();
            //4. 获取数组中元素的最大值,即为最高分
            if(maxScore < scores[i]){
                maxScore = scores[i];
            }
        }

        System.out.println("最高分是:" + maxScore);

        //5. 遍历数组元素,输出各自的分数,并根据其分数与最高分的差值,获取各自的等级
        char grade;
        for (int i = 0; i < scores.length; i++) {

            if(scores[i] >= maxScore - 10){
                grade = 'A';
            }else if(scores[i] >= maxScore - 20){
                grade = 'B';
            }else if(scores[i] >= maxScore - 30){
                grade = 'C';
            }else{
                grade = 'D';
            }
            System.out.println("student " + i + " socre is " + scores[i] + ", grade is " + grade);
        }
        //关闭资源
        scanner.close();

    }
}

5. 多维数组的使用


5.1 概述

  • Java 语言里提供了支持多维数组的语法。

  • 如果说可以把一维数组当成几何中的线性图形,那么二维数组就相当于是一个表格,像Excel中的表格、围棋棋盘一样。

  • 应用举例1:

某公司2022年全年各个月份的销售额进行登记。按月份存储,可以使用一维数组。如下:

int[] monthData = new int[]{23,43,22,34,55,65,44,67,45,78,67,66};

如果改写为按季度为单位存储怎么办呢?

int[][] quarterData = new int[][]{
    
    {23,43,22},{34,55,65},{44,67,45},{78,67,66}};
  • 应用举例2:

高一年级三个班级均由多个学生姓名构成一个个数组。如下:

String[] class1 = new String[]{"段誉","令狐冲","任我行"};

String[] class2 = new String[]{"张三丰","周芷若"};

String[] class3 = new String[]{"赵敏","张无忌","韦小宝","杨过"};

那从整个年级看,我们可以声明一个二维数组。如下:

String[][] grade = new String[][]{
    
    {"段誉","令狐冲","任我行"},{"张三丰","周芷若"},{"赵敏","张无忌","韦小宝","杨过"}};

应用举例3:

蓝框的几个元素,可以使用一维数组来存储。但现在发现每个元素下还有下拉框,其内部还有元素,那就需要使用二维数组来存储:

使用说明

  • 对于二维数组的理解,可以看成是一维数组array1又作为另一个一维数组array2的元素而存在。

  • 其实,从数组底层的运行机制来看,其实没有多维数组。

5.2 声明与初始化

5.2.1 声明

二维数组声明的语法格式:

//推荐
元素的数据类型[][] 二维数组的名称;

//不推荐
元素的数据类型  二维数组名[][];
//不推荐
元素的数据类型[]  二维数组名[];

例如:

public class Test20TwoDimensionalArrayDefine {
    public static void main(String[] args) {
        //存储多组成绩
        int[][] grades;

        //存储多组姓名
        String[][] names;
    }
}

面试:

int[] x, y[];
//x是一维数组,y是二维数组

5.2.2 静态初始化

格式:

int[][] arr = new int[][]{
    
    {3,8,2},{2,7},{9,0,1,6}};

定义一个名称为arr的二维数组,二维数组中有三个一维数组

  • 每一个一维数组中具体元素也都已初始化

  • 第一个一维数组 arr[0] = {3,8,2};

  • 第二个一维数组 arr[1] = {2,7};

  • 第三个一维数组 arr[2] = {9,0,1,6};

  • 第三个一维数组的长度表示方式:arr[2].length;

注意特殊写法情况:int[] x,y[]; x是一维数组,y是二维数组。
  • 举例1:

int[][] arr = {
    
    {1,2,3},{4,5,6},{7,8,9,10}};//声明与初始化必须在一句完成

int[][] arr = new int[][]{
    
    {1,2,3},{4,5,6},{7,8,9,10}};

int[][] arr;
arr = new int[][]{
    
    {1,2,3},{4,5,6},{7,8,9,10}};

arr = new int[3][3]{
    
    {1,2,3},{4,5,6},{7,8,9,10}};//错误,静态初始化右边new 数据类型[][]中不能写数字

举例2:

public class TwoDimensionalArrayInitialize {
    public static void main(String[] args) {
        //存储多组成绩
        int[][] grades = {
                    {89,75,99,100},
                    {88,96,78,63,100,86},
                    {56,63,58},
                    {99,66,77,88}
                };

        //存储多组姓名
        String[][] names = {
            {"张三","李四", "王五", "赵六"},
            {"刘备","关羽","张飞","诸葛亮","赵云","马超"},
            {"曹丕","曹植","曹冲"},
            {"孙权","周瑜","鲁肃","黄盖"}
        };
    }
}

5.2.3 动态初始化

如果二维数组的每一个数据,甚至是每一行的列数,需要后期单独确定,那么就只能使用动态初始化方式了。动态初始化方式分为两种格式:

格式1:规则二维表:每一行的列数是相同的

//(1)确定行数和列数
元素的数据类型[][] 二维数组名 = new 元素的数据类型[m][n];
    //其中,m:表示这个二维数组有多少个一维数组。或者说一共二维表有几行
    //其中,n:表示每一个一维数组的元素有多少个。或者说每一行共有一个单元格

//此时创建完数组,行数、列数确定,而且元素也都有默认值

//(2)再为元素赋新值
二维数组名[行下标][列下标] = 值;

举例:

int[][] arr = new int[3][2];
  • 定义了名称为arr的二维数组

  • 二维数组中有3个一维数组

  • 每一个一维数组中有2个元素

  • 一维数组的名称分别为arr[0], arr[1], arr[2]

  • 给第一个一维数组1脚标位赋值为78写法是:arr[0][1] = 78;

格式2:不规则:每一行的列数不一样

//(1)先确定总行数
元素的数据类型[][] 二维数组名 = new 元素的数据类型[总行数][];

//此时只是确定了总行数,每一行里面现在是null

//(2)再确定每一行的列数,创建每一行的一维数组
二维数组名[行下标] = new 元素的数据类型[该行的总列数];

//此时已经new完的行的元素就有默认值了,没有new的行还是null

//(3)再为元素赋值
二维数组名[行下标][列下标] = 值;

举例:

int[][] arr = new int[3][];
  • 二维数组中有3个一维数组。

  • 每个一维数组都是默认初始化值null (注意:区别于格式1)

  • 可以对这个三个一维数组分别进行初始化:arr[0] = new int[3]; arr[1] = new int[1]; arr[2] = new int[2];

  • 注:int[][]arr = new int[][3]; //非法

练习:

/*
 1
 2 2
 3 3 3
 4 4 4 4
 5 5 5 5 5
 */
public class Test25DifferentElementCount {
    public static void main(String[] args){
        //1、声明一个二维数组,并且确定行数
        //因为每一行的列数不同,这里无法直接确定列数
        int[][]  arr = new int[5][];

        //2、确定每一行的列数
        for(int i=0; i<arr.length; i++){
            /*
            arr[0] 的列数是1
            arr[1] 的列数是2
            arr[2] 的列数是3
            arr[3] 的列数是4
            arr[4] 的列数是5
            */
            arr[i] = new int[i+1];
        }

        //3、确定元素的值
        for(int i=0; i<arr.length; i++){
            for(int j=0; j<arr[i].length; j++){
                arr[i][j] = i+1;
            }
        }

        //4、遍历显示
        for(int i=0; i<arr.length; i++){
            for(int j=0; j<arr[i].length; j++){
                System.out.print(arr[i][j] + " ");
            }
            System.out.println();
        }

    }
}

5.3 数组的长度和角标

  • 二维数组的长度/行数:二维数组名.length

  • 二维数组的某一行:二维数组名[行下标],此时相当于获取其中一组数据。它本质上是一个一维数组。行下标的范围:[0, 二维数组名.length-1]。此时把二维数组看成一维数组的话,元素是行对象。

  • 某一行的列数:二维数组名[行下标].length,因为二维数组的每一行是一个一维数组。

  • 某一个元素:二维数组名[行下标][列下标],即先确定行/组,再确定列。

public class Test22TwoDimensionalArrayUse {
    public static void main(String[] args){
        //存储3个小组的学员的成绩,分开存储,使用二维数组。
        /*
        int[][] scores1;
        int scores2[][];
        int[] scores3[];*/

        int[][] scores = {
                {85,96,85,75},
                {99,96,74,72,75},
                {52,42,56,75}
        };

        System.out.println(scores);//[[I@15db9742
        System.out.println("一共有" + scores.length +"组成绩.");

        //[[:代表二维数组,I代表元素类型是int
        System.out.println(scores[0]);//[I@6d06d69c
        //[:代表一维数组,I代表元素类型是int
        System.out.println(scores[1]);//[I@7852e922
        System.out.println(scores[2]);//[I@4e25154f
        //System.out.println(scores[3]);//ArrayIndexOutOfBoundsException: 3

        System.out.println("第1组有" + scores[0].length +"个学员.");
        System.out.println("第2组有" + scores[1].length +"个学员.");
        System.out.println("第3组有" + scores[2].length +"个学员.");

        System.out.println("第1组的每一个学员成绩如下:");
        //第一行的元素
        System.out.println(scores[0][0]);//85
        System.out.println(scores[0][1]);//96
        System.out.println(scores[0][2]);//85
        System.out.println(scores[0][3]);//75
        //System.out.println(scores[0][4]);//java.lang.ArrayIndexOutOfBoundsException: 4
    }
}

5.4 二维数组的遍历

  • 格式:

for(int i=0; i<二维数组名.length; i++){ //二维数组对象.length
    for(int j=0; j<二维数组名[i].length; j++){//二维数组行对象.length
        System.out.print(二维数组名[i][j]);
    }
    System.out.println();
}

举例:

public class Test23TwoDimensionalArrayIterate {
    public static void main(String[] args) {
        //存储3个小组的学员的成绩,分开存储,使用二维数组。
        int[][] scores = {
                {85,96,85,75},
                {99,96,74,72,75},
                {52,42,56,75}
        };

        System.out.println("一共有" + scores.length +"组成绩.");
        for (int i = 0; i < scores.length; i++) {
            System.out.print("第" + (i+1) +"组有" + scores[i].length + "个学员,成绩如下:");
            for (int j = 0; j < scores[i].length; j++) {
                System.out.print(scores[i][j]+"\t");
            }
            System.out.println();
        }
    }
}

5.5 内存解析

二维数组本质上是元素类型是一维数组的一维数组。

int[][] arr = {
    {1},
    {2,2},
    {3,3,3},
    {4,4,4,4},
    {5,5,5,5,5}
};
//1、声明二维数组,并确定行数和列数
int[][] arr = new int[4][5];

//2、确定元素的值
for (int i = 0; i < arr.length; i++) {
    for (int j = 0; j < arr.length; j++) {
        arr[i][j] = i + 1;
    }
}
//1、声明一个二维数组,并且确定行数
//因为每一行的列数不同,这里无法直接确定列数
int[][]  arr = new int[5][];

//2、确定每一行的列数
for(int i=0; i<arr.length; i++){
    /*
            arr[0] 的列数是1
            arr[1] 的列数是2
            arr[2] 的列数是3
            arr[3] 的列数是4
            arr[4] 的列数是5
            */
    arr[i] = new int[i+1];
}

//3、确定元素的值
for(int i=0; i<arr.length; i++){
    for(int j=0; j<arr[i].length; j++){
        arr[i][j] = i+1;
    }
}

5.6 应用举例

案例1:获取arr数组中所有元素的和。

提示:使用for的嵌套循环即可。

案例2:声明:int[] x,y[]; 在给x,y变量赋值以后,以下选项允许通过编译的是:

声明:int[] x,y[]; 在给x,y变量赋值以后,以下选项允许通过编译的是:
a)    x[0] = y;                 //no
b)    y[0] = x;                 //yes
c)    y[0][0] = x;              //no
d)    x[0][0] = y;              //no
e)    y[0][0] = x[0];           //yes
f)    x = y;                    //no

提示:
一维数组:int[] x  或者int x[]   
二维数组:int[][] y 或者  int[] y[]  或者 int  y[][]

案例3:使用二维数组打印一个 10 行杨辉三角。

提示:

  1. 第一行有 1 个元素, 第 n 行有 n 个元素

  1. 每一行的第一个元素和最后一个元素都是 1

  1. 从第三行开始, 对于非第一个元素和最后一个元素的元素。即:

yanghui[i][j] = yanghui[i-1][j-1] + yanghui[i-1][j];
/**
 * @author 尚硅谷-宋红康
 * @create 10:11
 */
public class YangHuiTest {
    public static void main(String[] args) {

        //1. 动态初始化的方式创建二维数组
        int[][] yangHui = new int[10][];

        for (int i = 0; i < yangHui.length; i++) {
            yangHui[i] = new int[i + 1];

            //2. 给数组元素赋值
            // 2.1 给外层数组元素中的首元素和末元素赋值
            yangHui[i][0] = yangHui[i][i] = 1;

            //2.2 给外层数组元素中的非首元素和非末元素赋值(难)
            //if(i > 1){ //从 i == 2 开始执行
                for(int j = 1;j < yangHui[i].length - 1;j++){ //非首元素和非末元素的角标范围
                    yangHui[i][j] = yangHui[i-1][j-1] + yangHui[i-1][j];

                }
            //}
        }



        //3. 遍历二维数组
        for (int i = 0; i < yangHui.length; i++) {
            for (int j = 0; j < yangHui[i].length; j++) {
                System.out.print(yangHui[i][j] + "\t");
            }

            System.out.println();
        }

    }
}

6. 数组的常见算法


6.1 数值型数组特征值统计

  • 这里的特征值涉及到:平均值、最大值、最小值、总和等

举例1:数组统计:求总和、均值

public class TestArrayElementSum {
    public static void main(String[] args) {
        int[] arr = {4,5,6,1,9};
        //求总和、均值
        int sum = 0;//因为0加上任何数都不影响结果
        for(int i=0; i<arr.length; i++){
            sum += arr[i];
        }
        double avg = (double)sum/arr.length;

        System.out.println("sum = " + sum);
        System.out.println("avg = " + avg);
    }
}

举例2:求数组元素的总乘积

public class TestArrayElementMul {
    public static void main(String[] args) {
        int[] arr = {4,5,6,1,9};

        //求总乘积
        long result = 1;//因为1乘以任何数都不影响结果
        for(int i=0; i<arr.length; i++){
            result *= arr[i];
        }

        System.out.println("result = " + result);
    }
}

举例3:求数组元素中偶数的个数

public class TestArrayElementEvenCount {
    public static void main(String[] args) {
        int[] arr = {4,5,6,1,9};
        //统计偶数个数
        int evenCount = 0;
        for(int i=0; i<arr.length; i++){
            if(arr[i]%2==0){
                evenCount++;
            }
        }

        System.out.println("evenCount = " + evenCount);
    }
}

举例4:求数组元素的最大值

public class TestArrayMax {
    public static void main(String[] args) {
        int[] arr = {4,5,6,1,9};
        //找最大值
        int max = arr[0];
        for(int i=1; i<arr.length; i++){//此处i从1开始,是max不需要与arr[0]再比较一次了
            if(arr[i] > max){
                max = arr[i];
            }
        }

        System.out.println("max = " + max);
    }
}

举例5:找最值及其第一次出现的下标

public class TestMaxIndex {
    public static void main(String[] args) {
        int[] arr = {4,5,6,1,9};
        //找最大值以及第一个最大值下标
        int max = arr[0];
        int index = 0;
        for(int i=1; i<arr.length; i++){
            if(arr[i] > max){
                max = arr[i];
                index = i;
            }
        }

        System.out.println("max = " + max);
        System.out.println("index = " + index);
    }
}

举例6:找最值及其所有最值的下标

public class Test13AllMaxIndex {
    public static void main(String[] args) {
        int[] arr = {4,5,6,1,9,9,3};
        //找最大值
        int max = arr[0];
        for(int i=1; i<arr.length; i++){
            if(arr[i] > max){
                max = arr[i];
            }
        }
        System.out.println("最大值是:" + max);
        System.out.print("最大值的下标有:");

        //遍历数组,看哪些元素和最大值是一样的
        for(int i=0; i<arr.length; i++){
            if(max == arr[i]){
                System.out.print(i+"\t");
            }
        }
        System.out.println();
    }
}

优化

public class Test13AllMaxIndex2 {
    public static void main(String[] args) {
        int[] arr = {4,5,6,1,9,9,3};
        //找最大值
        int max = arr[0];
        String index = "0";
        for(int i=1; i<arr.length; i++){
            if(arr[i] > max){
                max = arr[i];
                index = i + "";
            }else if(arr[i] == max){
                index += "," + i;
            }
        }

        System.out.println("最大值是" + max);
        System.out.println("最大值的下标是[" + index+"]");
    }
}

举例7(难):输入一个整形数组,数组里有正数也有负数。数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。要求时间复杂度为O(n)。例如:输入的数组为1, -2, 3, -10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,因此输出为该子数组的和18。

public class Test5 {
    public static void main(String[] args) {
        int[] arr = new int[]{1, -2, 3, 10, -4, 7, 2, -5};
        int i = getGreatestSum(arr);
        System.out.println(i);
    }
    
    public static int getGreatestSum(int[] arr){
        int greatestSum = 0;
        if(arr == null || arr.length == 0){
            return 0;
        }
        int temp = greatestSum;
        for(int i = 0;i < arr.length;i++){
            temp += arr[i];
            
            if(temp < 0){
                temp = 0;
            }
            
            if(temp > greatestSum){
                greatestSum = temp;
            }
        }
        if(greatestSum == 0){
            greatestSum = arr[0];
            for(int i = 1;i < arr.length;i++){
                if(greatestSum < arr[i]){
                    greatestSum = arr[i];
                }
            }
        }
        return greatestSum;
    }
}

举例8:评委打分

分析以下需求,并用代码实现:

(1)在编程竞赛中,有10位评委为参赛的选手打分,分数分别为:5,4,6,8,9,0,1,2,7,3

(2)求选手的最后得分(去掉一个最高分和一个最低分后其余8位评委打分的平均值)

/**
 * @author 尚硅谷-宋红康
 * @create 10:03
 */
public class ArrayExer {
    public static void main(String[] args) {
        int[] scores = {5,4,6,8,9,0,1,2,7,3};

        int max = scores[0];
        int min = scores[0];
        int sum = 0;
        for(int i = 0;i < scores.length;i++){
            if(max < scores[i]){
                max = scores[i];
            }

            if(min > scores[i]){
                min = scores[i];
            }

            sum += scores[i];
        }

        double avg = (double)(sum - max - min) / (scores.length - 2);

        System.out.println("选手去掉最高分和最低分之后的平均分为:" + avg);
    }
}

6.2 数组元素的赋值与数组复制

举例1:杨辉三角(见二维数组课后案例)

举例2:使用简单数组

(1)创建一个名为ArrayTest的类,在main()方法中声明array1和array2两个变量,他们是int[]类型的数组。

(2)使用大括号{},把array1初始化为8个素数:2,3,5,7,11,13,17,19。

(3)显示array1的内容。

(4)赋值array2变量等于array1,修改array2中的偶索引元素,使其等于索引值(如array[0]=0,array[2]=2)。打印出array1。 array2 = array1;

思考:array1和array2是什么关系?
拓展:修改题目,实现array2对array1数组的复制

举例3:一个数组,让数组的每个元素去除第一个元素,得到的商作为被除数所在位置的新值。

public class Test3 {
    public static void main(String[] args) {
        int[] arr = new int[]{12,43,65,3,-8,64,2};
        
//        for(int i = 0;i < arr.length;i++){
//            arr[i] = arr[i] / arr[0];
//        }
        for(int i = arr.length -1;i >= 0;i--){
            arr[i] = arr[i] / arr[0];
        }
        //遍历arr
        for(int i = 0;i < arr.length;i++){
            System.out.print(arr[i] + " ");
        }
    }
}

举例4:创建一个长度为6的int型数组,要求数组元素的值都在1-30之间,且是随机赋值。同时,要求元素的值各不相同。

public class Test4 {
    // 5-67 Math.random() * 63 + 5;
    @Test
    public void test1() {
        int[] arr = new int[6];
        for (int i = 0; i < arr.length; i++) {// [0,1) [0,30) [1,31)
            arr[i] = (int) (Math.random() * 30) + 1;

            boolean flag = false;
            while (true) {
                for (int j = 0; j < i; j++) {
                    if (arr[i] == arr[j]) {
                        flag = true;
                        break;
                    }
                }
                if (flag) {
                    arr[i] = (int) (Math.random() * 30) + 1;
                    flag = false;
                    continue;
                }
                break;
            }
        }

        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }
    //更优的方法
    @Test
    public void test2(){
        int[] arr = new int[6];
        for (int i = 0; i < arr.length; i++) {// [0,1) [0,30) [1,31)
            arr[i] = (int) (Math.random() * 30) + 1;
            
                for (int j = 0; j < i; j++) {
                    if (arr[i] == arr[j]) {
                        i--;
                        break;
                    }
                }
            }

        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }
}

举例5:扑克牌

案例:遍历扑克牌

遍历扑克牌,效果如图所示:

提示:使用两个字符串数组,分别保存花色和点数,再用一个字符串数组保存最后的扑克牌。String[] hua = {"黑桃","红桃","梅花","方片"};String[] dian = {"A","2","3","4","5","6","7","8","9","10","J","Q","K"};

package com.atguigu3.common_algorithm.exer5;

/**
 * @author 尚硅谷-宋红康
 * @create 17:16
 */
public class ArrayExer05 {
    public static void main(String[] args) {
        String[] hua = {"黑桃","红桃","梅花","方片"};
        String[] dian = {"A","2","3","4","5","6","7","8","9","10","J","Q","K"};


        String[] pai = new String[hua.length * dian.length];
        int k = 0;
        for(int i = 0;i < hua.length;i++){
            for(int j = 0;j < dian.length;j++){
                pai[k++] = hua[i] + dian[j];
            }
        }

        for (int i = 0; i < pai.length; i++) {
            System.out.print(pai[i] + "  ");
            if(i % 13 == 12){
                System.out.println();
            }
        }

    }
}

拓展:在上述基础上,增加大王、小王。

举例6:回形数

从键盘输入一个整数(1~20) ,则以该数字为矩阵的大小,把1,2,3…n*n 的数字按照顺时针螺旋的形式填入其中。

例如: 输入数字2,则程序输出: 1 2 4 3

输入数字3,则程序输出: 1 2 3 8 9 4 7 6 5 输入数字4, 则程序输出: 1 2 3 4 12 13 14 5 11 16 15 6 10 9 8 7

`//方式1
public class RectangleTest {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("输入一个数字");
        int len = scanner.nextInt();
        int[][] arr = new int[len][len];
        
        int s = len * len;
        /*
         * k = 1:向右
         * k = 2:向下
         * k = 3:向左
         * k = 4:向上
         */
        int k = 1;
        int i = 0,j = 0;
        for(int m = 1;m <= s;m++){
            if(k == 1){
                if(j < len && arr[i][j] == 0){
                    arr[i][j++] = m;
                }else{
                    k = 2;
                    i++;  
                    j--;
                    m--;
                }
            }else if(k == 2){
                if(i < len && arr[i][j] == 0){
                    arr[i++][j] = m;
                }else{
                    k = 3;
                    i--;
                    j--;
                    m--;
                }
            }else if(k == 3){
                if(j >= 0 && arr[i][j] == 0){
                    arr[i][j--] = m;
                }else{
                    k = 4;
                    i--;
                    j++;
                    m--;
                }
            }else if(k == 4){
                if(i >= 0 && arr[i][j] == 0){
                    arr[i--][j] = m;
                }else{
                    k = 1;
                    i++;
                    j++;
                    m--;
                }
            }
        }
        
        //遍历
        for(int m = 0;m < arr.length;m++){
            for(int n = 0;n < arr[m].length;n++){
                System.out.print(arr[m][n] + "\t");
            }
            System.out.println();
        }
    }
}
//方式2
/*
    01 02 03 04 05 06 07 
    24 25 26 27 28 29 08 
    23 40 41 42 43 30 09 
    22 39 48 49 44 31 10 
    21 38 47 46 45 32 11 
    20 37 36 35 34 33 12 
    19 18 17 16 15 14 13 
 */
public class RectangleTest1 {

    public static void main(String[] args) {
        int n = 7;
        int[][] arr = new int[n][n];
        
        int count = 0; //要显示的数据
        int maxX = n-1; //x轴的最大下标
        int maxY = n-1; //Y轴的最大下标
        int minX = 0; //x轴的最小下标
        int minY = 0; //Y轴的最小下标
        while(minX<=maxX) {
            for(int x=minX;x<=maxX;x++) {
                arr[minY][x] = ++count;
            }
            minY++;
            for(int y=minY;y<=maxY;y++) {
                arr[y][maxX] = ++count;
            }
            maxX--;
            for(int x=maxX;x>=minX;x--) {
                arr[maxY][x] = ++count;
            }
            maxY--;
            for(int y=maxY;y>=minY;y--) {
                arr[y][minX] = ++count;
            }
            minX++;
        }
        
        
        for(int i=0;i<arr.length;i++) {
            for(int j=0;j<arr.length;j++) {
                String space = (arr[i][j]+"").length()==1 ? "0":"";
                System.out.print(space+arr[i][j]+" ");
            }
            System.out.println();
        }
    }
}

6.3 数组元素的反转

实现思想:数组对称位置的元素互换。

public class TestArrayReverse1 {
    public static void main(String[] args) {
        int[] arr = {1,2,3,4,5};
        System.out.println("反转之前:");
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }

        //反转
         /*
        思路:首尾对应位置的元素交换
        (1)确定交换几次
           次数 = 数组.length / 2
        (2)谁和谁交换
        for(int i=0; i<次数; i++){
             int temp = arr[i];
             arr[i] = arr[arr.length-1-i];
             arr[arr.length-1-i] = temp;
        }
         */
        for(int i=0; i<arr.length/2; i++){
            int temp = arr[i];
            arr[i] = arr[arr.length-1-i];
            arr[arr.length-1-i] = temp;
        }

        System.out.println("反转之后:");
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }

}

public class TestArrayReverse2 {
    public static void main(String[] args) {
        int[] arr = {1,2,3,4,5};
        System.out.println("反转之前:");
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }

        //反转
        //左右对称位置交换
        for(int left=0,right=arr.length-1; left<right; left++,right--){
            //首  与  尾交换
            int temp = arr[left];
            arr[left] = arr[right];
            arr[right] = temp;
        }

        System.out.println("反转之后:");
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }
}

6.4 数组的扩容与缩容

数组的扩容

题目:现有数组 int[] arr = new int[]{1,2,3,4,5}; ,现将数组长度扩容1倍,并将10,20,30三个数据添加到arr数组中,如何操作?

public class ArrTest1 {
    public static void main(String[] args) {

        int[] arr = new int[]{1,2,3,4,5};
        int[] newArr = new int[arr.length << 1];

        for(int i = 0;i < arr.length;i++){
            newArr[i] = arr[i];
        }

        newArr[arr.length] = 10;
        newArr[arr.length + 1] = 20;
        newArr[arr.length + 2] = 30;

        arr = newArr;

        //遍历arr
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }
}

数组的缩容

题目:现有数组 int[] arr={1,2,3,4,5,6,7}。现需删除数组中索引为4的元素。

public class ArrTest2 {
    public static void main(String[] args) {

        int[] arr = {1, 2, 3, 4, 5, 6, 7};
        //删除数组中索引为4的元素
        int delIndex = 4;
        //方案1:
        /*//创建新数组
        int[] newArr = new int[arr.length - 1];

        for (int i = 0; i < delIndex; i++) {
            newArr[i] = arr[i];
        }
        for (int i = delIndex + 1; i < arr.length; i++) {
            newArr[i - 1] = arr[i];
        }

        arr = newArr;
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }*/

        //方案2:
        for (int i = delIndex; i < arr.length - 1; i++) {
            arr[i] = arr[i + 1];
        }
        arr[arr.length - 1] = 0;

        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }
}

6.5 数组的元素查找

1、顺序查找

顺序查找:挨个查看

要求:对数组元素的顺序没要求

public class TestArrayOrderSearch {
    //查找value第一次在数组中出现的index
    public static void main(String[] args){
        int[] arr = {4,5,6,1,9};
        int value = 1;
        int index = -1;

        for(int i=0; i<arr.length; i++){
            if(arr[i] == value){
                index = i;
                break;
            }
        }

        if(index==-1){
            System.out.println(value + "不存在");
        }else{
            System.out.println(value + "的下标是" + index);
        }
    }
}

2、二分查找

举例

实现步骤:

//二分法查找:要求此数组必须是有序的。
int[] arr3 = new int[]{-99,-54,-2,0,2,33,43,256,999};
boolean isFlag = true;
int value = 256;
//int value = 25;
int head = 0;//首索引位置
int end = arr3.length - 1;//尾索引位置
while(head <= end){
    int middle = (head + end) / 2;
    if(arr3[middle] == value){
        System.out.println("找到指定的元素,索引为:" + middle);
        isFlag = false;
        break;
    }else if(arr3[middle] > value){
        end = middle - 1;
    }else{//arr3[middle] < value
        head = middle + 1;
    }
}

if(isFlag){
    System.out.println("未找打指定的元素");
}

6.6 数组元素排序

6.6.1 算法概述

  • 定义

  • 排序:假设含有n个记录的序列为{R1,R2,...,Rn},其相应的关键字序列为{K1,K2,...,Kn}。将这些记录重新排序为{Ri1,Ri2,...,Rin},使得相应的关键字值满足条Ki1<=Ki2<=...<=Kin,这样的一种操作称为排序。

  • 通常来说,排序的目的是快速查找。

  • 衡量排序算法的优劣:

  • 时间复杂度:分析关键字的比较次数和记录的移动次数

  • 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)<O(nn)

  • 空间复杂度:分析排序算法中需要多少辅助内存

一个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
  • 稳定性:若两个记录A和B的关键字值相等,但排序后A、B的先后次序保持不变,则称这种排序算法是稳定的。

6.6.2 排序算法概述

  • 排序算法分类:内部排序和外部排序

  • 内部排序:整个排序过程不需要借助于外部存储器(如磁盘等),所有排序操作都在内存中完成。

  • 外部排序:参与排序的数据非常多,数据量非常大,计算机无法把整个排序过程放在内存中完成,必须借助于外部存储器(如磁盘)。外部排序最常见的是多路归并排序。可以认为外部排序是由多次内部排序组成。

  • 十大内部排序算法

数组的排序算法很多,实现方式各不相同,时间复杂度、空间复杂度、稳定性也各不相同:

常见时间复杂度所消耗的时间从小到大排序:

O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

注意,经常将以2为底n的对数简写成logn。

6.6.3 冒泡排序(Bubble Sort)

排序思想:

  1. 比较相邻的元素。如果第一个比第二个大(升序),就交换他们两个。

  1. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

  1. 针对所有的元素重复以上的步骤,除了最后一个。

  1. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较为止。

动态演示:https://visualgo.net/zh/sorting

/*
1、冒泡排序(最经典)
思想:每一次比较“相邻(位置相邻)”元素,如果它们不符合目标顺序(例如:从小到大),
     就交换它们,经过多轮比较,最终实现排序。
     (例如:从小到大)     每一轮可以把最大的沉底,或最小的冒顶。
     
过程:arr{6,9,2,9,1}  目标:从小到大

第一轮:
    第1次,arr[0]与arr[1],6>9不成立,满足目标要求,不交换
    第2次,arr[1]与arr[2],9>2成立,不满足目标要求,交换arr[1]与arr[2] {6,2,9,9,1}
    第3次,arr[2]与arr[3],9>9不成立,满足目标要求,不交换
    第4次,arr[3]与arr[4],9>1成立,不满足目标要求,交换arr[3]与arr[4] {6,2,9,1,9}
    第一轮所有元素{6,9,2,9,1}已经都参与了比较,结束。
    第一轮的结果:第“一”最大值9沉底(本次是后面的9沉底),即到{6,2,9,1,9}元素的最右边

第二轮:
    第1次,arr[0]与arr[1],6>2成立,不满足目标要求,交换arr[0]与arr[1] {2,6,9,1,9}
    第2次,arr[1]与arr[2],6>9不成立,满足目标要求,不交换
    第3次:arr[2]与arr[3],9>1成立,不满足目标要求,交换arr[2]与arr[3] {2,6,1,9,9}
    第二轮未排序的所有元素 {6,2,9,1}已经都参与了比较,结束。
    第二轮的结果:第“二”最大值9沉底(本次是前面的9沉底),即到{2,6,1,9}元素的最右边
第三轮:
    第1次,arr[0]与arr[1],2>6不成立,满足目标要求,不交换
    第2次,arr[1]与arr[2],6>1成立,不满足目标要求,交换arr[1]与arr[2] {2,1,6,9,9}
    第三轮未排序的所有元素{2,6,1}已经都参与了比较,结束。
    第三轮的结果:第三最大值6沉底,即到 {2,1,6}元素的最右边
第四轮:
    第1次,arr[0]与arr[1],2>1成立,不满足目标要求,交换arr[0]与arr[1] {1,2,6,9,9}
    第四轮未排序的所有元素{2,1}已经都参与了比较,结束。
    第四轮的结果:第四最大值2沉底,即到{1,2}元素的最右边

*/
public class Test19BubbleSort{
    public static void main(String[] args){
        int[] arr = {6,9,2,9,1};

        //目标:从小到大
        //冒泡排序的轮数 = 元素的总个数 - 1
        //轮数是多轮,每一轮比较的次数是多次,需要用到双重循环,即循环嵌套
        //外循环控制 轮数,内循环控制每一轮的比较次数和过程
        for(int i=1; i<arr.length; i++){ //循环次数是arr.length-1次/轮
            /*
            假设arr.length=5
            i=1,第1轮,比较4次
                arr[0]与arr[1]
                arr[1]与arr[2]
                arr[2]与arr[3]
                arr[3]与arr[4]
                
                arr[j]与arr[j+1],int j=0;j<4; j++
                
            i=2,第2轮,比较3次
                arr[0]与arr[1]
                arr[1]与arr[2]
                arr[2]与arr[3]
                
                arr[j]与arr[j+1],int j=0;j<3; j++
                
            i=3,第3轮,比较2次
                arr[0]与arr[1]
                arr[1]与arr[2]
                
                arr[j]与arr[j+1],int j=0;j<2; j++
            i=4,第4轮,比较1次
                arr[0]与arr[1]
            
                arr[j]与arr[j+1],int j=0;j<1; j++
                
                int j=0; j<arr.length-i; j++
            */
            for(int j=0; j<arr.length-i; j++){
                //希望的是arr[j] < arr[j+1]
                if(arr[j] > arr[j+1]){
                    //交换arr[j]与arr[j+1]
                    int temp = arr[j];
                    arr[j] = arr[j+1];
                    arr[j+1] = temp;
                }
            }
        }

        //完成排序,遍历结果
        for(int i=0; i<arr.length; i++){
            System.out.print(arr[i]+"  ");
        }
    }
}

冒泡排序优化(选讲)

/*
思考:冒泡排序是否可以优化
*/
class Test19BubbleSort2{
    public static void main(String[] args) {
        int[] arr = {1, 3, 5, 7, 9};

        //从小到大排序
        for (int i = 0; i < arr.length - 1; i++) {
            boolean flag = true;//假设数组已经是有序的
            for (int j = 0; j < arr.length - 1 - i; j++) {
                //希望的是arr[j] < arr[j+1]
                if (arr[j] > arr[j + 1]) {
                    //交换arr[j]与arr[j+1]
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;

                    flag = false;//如果元素发生了交换,那么说明数组还没有排好序
                }
            }
            if (flag) {
                break;
            }
        }

        //完成排序,遍历结果
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + "  ");
        }
    }
}

6.6.4 快速排序

快速排序(Quick Sort)由图灵奖获得者Tony Hoare发明,被列为20世纪十大算法之一,是迄今为止所有内排序算法中速度最快的一种,快速排序的时间复杂度为O(nlog(n))。

快速排序通常明显比同为O(nlogn)的其他算法更快,因此常被采用,而且快排采用了分治法的思想,所以在很多笔试面试中能经常看到快排的影子。

排序思想:

  1. 从数列中挑出一个元素,称为"基准"(pivot),

  1. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

  1. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

  1. 递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

动态演示:https://visualgo.net/zh/sorting

图示1:

图示2:

第一轮操作:

第二轮操作:

6.6.5 内部排序性能比较与选择

  • 性能比较

  • 从平均时间而言:快速排序最佳。但在最坏情况下时间性能不如堆排序和归并排序。

  • 从算法简单性看:由于直接选择排序、直接插入排序和冒泡排序的算法比较简单,将其认为是简单算法。对于Shell排序、堆排序、快速排序和归并排序算法,其算法比较复杂,认为是复杂排序。

  • 从稳定性看:直接插入排序、冒泡排序和归并排序时稳定的;而直接选择排序、快速排序、 Shell排序和堆排序是不稳定排序

  • 从待排序的记录数n的大小看,n较小时,宜采用简单排序;而n较大时宜采用改进排序。

  • 选择

  • 若n较小(如n≤50),可采用直接插入或直接选择排序。当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插入,应选直接选择排序为宜。

  • 若文件初始状态基本有序(指正序),则应选用直接插入、冒泡或随机的快速排序为宜;

  • 若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。

7. Arrays工具类的使用


java.util.Arrays类即为操作数组的工具类,包含了用来操作数组(比如排序和搜索)的各种方法。 比如:

  • 数组元素拼接

  • static String toString(int[] a) :字符串表示形式由数组的元素列表组成,括在方括号("[]")中。相邻元素用字符 ", "(逗号加空格)分隔。形式为:[元素1,元素2,元素3。。。]

  • static String toString(Object[] a) :字符串表示形式由数组的元素列表组成,括在方括号("[]")中。相邻元素用字符 ", "(逗号加空格)分隔。元素将自动调用自己从Object继承的toString方法将对象转为字符串进行拼接,如果没有重写,则返回类型@hash值,如果重写则按重写返回的字符串进行拼接。

  • 数组排序

  • static void sort(int[] a) :将a数组按照从小到大进行排序

  • static void sort(int[] a, int fromIndex, int toIndex) :将a数组的[fromIndex, toIndex)部分按照升序排列

  • static void sort(Object[] a) :根据元素的自然顺序对指定对象数组按升序进行排序。

  • static <T> void sort(T[] a, Comparator<? super T> c) :根据指定比较器产生的顺序对指定对象数组进行排序。

  • 数组元素的二分查找

  • static int binarySearch(int[] a, int key) 、static int binarySearch(Object[] a, Object key) :要求数组有序,在数组中查找key是否存在,如果存在返回第一次找到的下标,不存在返回负数。

  • 数组的复制

  • static int[] copyOf(int[] original, int newLength) :根据original原数组复制一个长度为newLength的新数组,并返回新数组

  • static <T> T[] copyOf(T[] original,int newLength):根据original原数组复制一个长度为newLength的新数组,并返回新数组

  • static int[] copyOfRange(int[] original, int from, int to) :复制original原数组的[from,to)构成新数组,并返回新数组

  • static <T> T[] copyOfRange(T[] original,int from,int to):复制original原数组的[from,to)构成新数组,并返回新数组

  • 比较两个数组是否相等

  • static boolean equals(int[] a, int[] a2) :比较两个数组的长度、元素是否完全相同

  • static boolean equals(Object[] a,Object[] a2):比较两个数组的长度、元素是否完全相同

  • 填充数组

  • static void fill(int[] a, int val) :用val值填充整个a数组

  • static void fill(Object[] a,Object val):用val对象填充整个a数组

  • static void fill(int[] a, int fromIndex, int toIndex, int val):将a数组[fromIndex,toIndex)部分填充为val值

  • static void fill(Object[] a, int fromIndex, int toIndex, Object val) :将a数组[fromIndex,toIndex)部分填充为val对象

举例:java.util.Arrays类的sort()方法提供了数组元素排序功能:

import java.util.Arrays;
public class SortTest {
    public static void main(String[] args) {
        int[] arr = {3, 2, 5, 1, 6};
        System.out.println("排序前" + Arrays.toString(arr));
        Arrays.sort(arr);
        System.out.println("排序后" + Arrays.toString(arr));
    }
}

8. 数组中的常见异常


8.1 数组角标越界异常

当访问数组元素时,下标指定超出[0, 数组名.length-1]的范围时,就会报数组下标越界异常:ArrayIndexOutOfBoundsException。

public class TestArrayIndexOutOfBoundsException {
    public static void main(String[] args) {
        int[] arr = {1,2,3};
       // System.out.println("最后一个元素:" + arr[3]);//错误,下标越界
      //  System.out.println("最后一个元素:" + arr[arr.length]);//错误,下标越界
        System.out.println("最后一个元素:" + arr[arr.length-1]);//对
    }
}

创建数组,赋值3个元素,数组的索引就是0,1,2,没有3索引,因此我们不能访问数组中不存在的索引,程序运行后,将会抛出 ArrayIndexOutOfBoundsException 数组越界异常。在开发中,数组的越界异常是不能出现的,一旦出现了,就必须要修改我们编写的代码。

8.2 空指针异常

观察一下代码,运行后会出现什么结果。

public class TestNullPointerException {
    public static void main(String[] args) {
        //定义数组
        int[][] arr = new int[3][];

        System.out.println(arr[0][0]);//NullPointerException
    }
}

因为此时数组的每一行还未分配具体存储元素的空间,此时arr[0]是null,此时访问arr[0][0]会抛出NullPointerException 空指针异常。

空指针异常在内存图中的表现

小结:空指针异常情况

        //举例一:
//        int[] arr1 = new int[10];
//        arr1 = null;
//        System.out.println(arr1[9]);
        
        //举例二:
//        int[][] arr2 = new int[5][];
//        //arr2[3] = new int[10];
//        System.out.println(arr2[3][3]);
        
        //举例三:
        String[] arr3 = new String[10];
        System.out.println(arr3[2].toString());

猜你喜欢

转载自blog.csdn.net/m0_59281987/article/details/129569626