(十二) HashMap

前言:上次面试的时候被问到hashmap使用的数据结构,我记得不大清楚了,不确定地说是用的哈希表,面试官一脸嫌弃。。。现在看了下不是就用到哈希表么,也叫做散列表,难道是精神攻击=-=现在总结一下,以后再遇到就可以笃定地说了。


参考博客:

HashMap实现原理及源码分析


1.HashMap基础知识

首先盗一个图,如下的图就是hashMap的数据结构示意图了,称为哈希表,又叫做散列表,先有个印象。横的一排代表了hashmap的主干,其实是一个数组,竖的呢则是链表,可以看到有个next元素指向下一个,数组和链表就组成了hashmap的哈希表的数据结构。(下面的图都是用的Entry,其实到jdk 1.8改成Node了,是个单向链表自定义内部类)

复制粘贴一段其他数据结构在新增,查找等基础操作执行性能

  数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),当然,对于有序数组,则可采用二分查找,插值查找,斐波那契查找等方式,可将查找复杂度提高为O(logn);对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)

  线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)

  二叉树:对一棵相对平衡的有序二叉树,对其进行插入,查找,删除等操作,平均复杂度均为O(logn)。

  哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下,仅需一次定位即可完成,时间复杂度为O(1),接下来我们就来看看哈希表是如何实现达到惊艳的常数阶O(1)的。

  我们知道,数据结构的物理存储结构只有两种:顺序存储结构链式存储结构(像栈,队列,树,图等是从逻辑结构去抽象的,映射到内存中,也这两种物理组织形式),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组

  比如我们要新增或查找某个元素,我们通过把当前元素的关键字 通过某个函数映射到数组中的某个位置,通过数组下标一次定位就可完成操作。

        存储位置 = f(关键字)

  其中,这个函数f一般称为哈希函数,这个函数的设计好坏会直接影响到哈希表的优劣。举个例子,比如我们要在哈希表中执行插入操作:

查找操作同理,先通过哈希函数计算出实际存储地址,然后从数组中对应地址取出即可。

  哈希冲突

  然而万事无完美,如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞。前面我们提到过,哈希函数的设计至关重要,好的哈希函数会尽可能地保证 计算简单散列地址分布均匀,但是,我们需要清楚的是,数组是一块连续的固定长度的内存空间,再好的哈希函数也不能保证得到的存储地址绝对不发生冲突。那么哈希冲突如何解决呢?哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式,


插一下其他博客对hashmap的描述:

HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。HashMap储存的是键值对,HashMap很快。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。(这里是说hashmap地方不够的时候会扩容)

HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

数组:存储区间连续,占用内存严重,寻址容易,插入删除困难;
链表:存储区间离散,占用内存比较宽松,寻址困难,插入删除容易;
Hashmap综合应用了这两种数据结构,实现了寻址容易,插入删除也容易。


2. HashMap的存取实现

基本原理(例子说的有问题,至少jdk 1.8有问题):先声明一个下标范围比较大的数组来存储元素。另外设计一个哈希函数(也叫做散列函数)来获得每一个元素的Key(关键字)的函数值(即数组下标,hash值)相对应,数组存储的元素是一个Node类,这个类有三个数据域,key、value(键值对),next(指向下一个Node)。
例如, 第一个键值对A进来。通过计算其key的hash得到的index=0。记做:Node[0] = A。
第二个键值对B,通过计算其index也等于0, HashMap会将B.next =A,Node[0] =B,

第三个键值对 C,index也等于0,那么C.next = B,Node[0] = C;这样我们发现index=0的地方事实上存取了A,B,C三个键值对,它们通过next这个属性链接在一起。我们可以将这个地方称为桶。 对于不同的元素,可能计算出了相同的函数值,这样就产生了“冲突”,这就需要解决冲突,“直接定址”与“解决冲突”是哈希表的两大特点。


结合如下代码例子应该是:

例如, 第一个键值对A进来。通过计算其key的hash得到的index=0。记做:Node[0] = A。
第二个键值对B,通过计算其index也等于0, HashMap会将A.next =B,Node[0] =A,
第三个键值对 C,index也等于0,那么B.next = C,Node[0] = A;

对于put代码如下:

 for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }

2.1 对应的代码实现

代码比较零碎,只能看到哪写到哪了,不懂的再百度下=-=

2.1.1 链表的基本单元Node

基础的Node类声明如下:

/**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

其实就是个单向链表,复写了hashCode和equals方法。


2.1.2 hashmap的默认构造参数

如下参数表明了hashmap的主干是一个默认大小为16的数组,它最大为2^30。后面还有个默认加载参数DEFAULT_LOAD_FACTOR,不知道是干嘛的,后面补充。

/**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

默认构造方法的注释也说明了这点:

/**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

对应初始化其实是在调用put的时候再调用resize方法,resize方法要么初始化为初始大小,指定大小或者默认大小16,要么将大小翻倍。

/**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * @return the table
     */
    final Node<K,V>[] resize() {

补充:threshold可以认为是当前容量下可承载的最大元素数,比如16个元素,最多承载16*0.75=12个,再往里加就会将数组扩容为2倍即24个。

if (++size > threshold)
            resize();

这边resize代码实现了数组的双倍扩容,即左移一位。

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }


2.1.3 hash值的计算方法

/**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

从上面的注释和代码来看,hash值是用key的hashcode的低16位和高16位进行异或得到最终的hash值,从上面的注释可以看到,Google这么做是为了减少hash碰撞,提升hash表的效率。在put方法中可以看到hash值和数组尺寸作与运算得到Node在数组中的位置。

if ((p = tab[i = (n - 1) & hash]) == null)

一个小细节:key是可以为null的,对于的hash为0,然后与n-1与运算会放在数组的第一个位置上。


2.1.4 put方法

从上面讲的基础知识可以看到,put方法其实就是先算出元素应该放在数组的哪个位置,接着再看这个位置上有没有已经被占据;如果没有被占就直接把坑占了,如果坑被占了就看那个元素是不是自己,如果是就替换一下值,如果不是则继续往下找看看有没有自己,实在没找到自己的话(已经遍历结束),就和最后一个元素商量一下我站你后面怎么样=-=

源码对应如下:

/**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }


2.1.5 get方法

首先还是和put方法差不多通过hash值算出存放位置,然后开始判断hash值和key值是不是相同,如果相同,则说明找到get对应的值了,否则返回null。

PS:为什么光判断key值不行呢,因为有的对象equals方法一样,但hashcode值不一样,但是巧合的是hash&(n-1)值一样即发生哈希碰撞导致他们存放在数组的同一位置,所以必须还是要判断hash值是不是一样的。

从这里可以引申出为什么光重写equals方法不好,因为hashcode如果不具有唯一性,那么在put的时候很有可能两个对象会互相覆盖,因为对于hashmap算法而言这两个对象是一个对象。这时候也就get不到自己存放好的元素了。

 /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }


3. HashMap的扩容原理

参考:

1.知乎

2.这个csdn讲的更详细点


由于(cap-1)都是奇数,那扩容即cap<<1后cap-1高位也多了一个1,所以与hash作与运算,要么高位是1要么是0,导致新的节点位置要不是以前,要不多加一个oldCap。而是0还是1则只要看hash对应高位是0还是1了,所以就是e.hash & oldCap


4. 总结

HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。经过理论和代码的双重学习后,对hashmap有更深入的了解了。

猜你喜欢

转载自blog.csdn.net/sinat_20059415/article/details/79589203