优先级队列 - 堆

前言

本篇博客讲述以下知识点

  1. 掌握堆的概念及实现
  2. 掌握 PriorityQueue 的使用

优先级队列

概念

前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该中场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;
在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)

堆的概念

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质:

堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树
在这里插入图片描述

堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储,
注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节点,就会导致空间利用率比较低。将元素存储到数组中后,可以根据二叉树章节的性质5对树进行还原。假设i为节点在数组中的下标,则有:

如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子

堆的创建 - 向下调整(数组初始化)

  1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)
  2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在,判断parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标记 , 将parent与较小的孩子child比较,如果:
    parent小于较小的孩子child,调整结束
    否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子
    树不满足对的性质,因此需要继续向下调整,
    即parent = child;child = parent*2+1; 然后继续
public void shiftDown(int[] array, int parent) {
    
    
	// child先标记parent的左孩子,因为parent可能右左没有右
	int child = 2 * parent + 1;
	int size = array.length;
	while (child < size) {
    
    
	// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记
		if(child+1 < size && array[child+1] < array[child]){
    
    
			child += 1;
		}
	// 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了
	if (array[parent] <= array[child]) {
    
    
		break;
	}else{
    
    
		// 将双亲与较小的孩子交换
		int t = array[parent];
		array[parent] = array[child];
		array[child] = t;
	// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整
		parent = child;
		child = parent * 2 + 1;
		}
	}
}

注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
时间复杂度分析:
最坏的情况即图示的情况,从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为log(N)
建堆的时间复杂度为O(N)

建堆的时间复杂度为O(N)

堆的插入总共需要两个步骤:

  1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)
  2. 将最后新插入的节点向上调整,直到满足堆的性质
public void shiftUp(int child) {
    
    
	// 找到child的双亲
	int parent = (child - 1) / 2;
	while (child > 0) {
    
    
	// 如果双亲比孩子大,parent满足堆的性质,调整结束
		if (array[parent] > array[child]) {
    
    
		break;
	}
	else{
    
    
		// 将双亲与孩子节点进行交换
		int t = array[parent];
		array[parent] = array[child];
		array[child] = t;
		// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增
		child = parent;
		parent = (child - 1) / 1;
	}
}
}

堆的删除

注意:堆的删除一定删除的是堆顶元素。具体如下:

  1. 将堆顶元素对堆中最后一个元素交换
  2. 将堆中有效数据个数减少一个
  3. 对堆顶元素进行向下调整
public class MyPriorityQueue {
    
    
	// 演示作用,不再考虑扩容部分的代码
	private int[] array = new int[100];
	private int size = 0;
	
	public void offer(int e) {
    
    
		array[size++] = e;
		shiftUp(size - 1);
	}
	public int poll() {
    
    
		int oldValue = array[0];
		array[0] = array[--size];
		shiftDown(0);
		return oldValue;
	}
	public int peek() {
    
    
		return array[0];
	}
}

常用接口

Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,本文主要介绍PriorityQueue。

关于PriorityQueue的使用要注意:

  1. 使用时必须导入PriorityQueue所在的包,即:
  2. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出
    ClassCastException异常
  3. 不能插入null对象,否则会抛出NullPointerException
  4. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
  5. 插入和删除元素的时间复杂度为
  6. PriorityQueue底层使用了堆数据结构
  7. PriorityQueue默认情况下是小堆—即每次获取到的元素都是最小的元素
函数名 解释
boolean offer(E e) 插入元素e,插入成功返回true,如果e对象为空,抛NullPointerException异常,时间复杂度 ,注意:空间不够时候会进行扩容
E peek() 获取优先级最高的元素,如果优先级队列为空,返回null
E poll() 移除优先级最高的元素并返回,如果优先级队列为空,返回null
int size() 获取有效元素的个数
void clear() 清空
boolean isEmpty() 检测优先级队列是否为空,空返回tru

猜你喜欢

转载自blog.csdn.net/qq_56454895/article/details/131860247