15. 大数据之Zookeper

  1. Zookeeper概念简介:

Zookeeper是一个分布式协调服务;就是为用户的分布式应用程序提供协调服务

A、zookeeper是为别的分布式程序服务的,是Hadoop和Hbase的重要组件。

B、Zookeeper本身就是一个分布式程序(只要有半数以上节点存活,zk就能正常服务)。

C、Zookeeper所提供的服务涵盖:主从协调、服务器节点动态上下线、统一配置管理、分布式共享锁、统一名称服务……

D、虽然说可以提供各种服务,但是zookeeper在底层其实只提供了两个功能:

管理(存储,读取)用户程序提交的数据;

并为用户程序提供数据节点监听服务;

 

Zookeeper常用应用场景:

1.

2.


3.


4.



Zookeeper集群的角色:  Leader 和  follower  Observer

只要集群中有半数以上节点存活,集群就能提供服务

 

2. zookeeper集群机制

半数机制:集群中半数以上机器存活,集群可用。

zookeeper适合装在奇数台机器上!!!


3. zookeeper结构和命令

3.1. zookeeper特性

1Zookeeper:一个leader,多个follower组成的集群

2、全局数据一致:每个server保存一份相同的数据副本,client无论连接到哪个server,数据都是一致的

3、分布式读写,更新请求转发,由leader实施

4、更新请求顺序进行,来自同一个client的更新请求按其发送顺序依次执行

5、数据更新原子性,一次数据更新要么成功,要么失败

6、实时性,在一定时间范围内,client能读到最新数据

 

3.2. zookeeper数据结构

1、层次化的目录结构,命名符合常规文件系统规范(见下图)

2、每个节点在zookeeper中叫做znode,并且其有一个唯一的路径标识

3、节点Znode可以包含数据和子节点(但是EPHEMERAL类型的节点不能有子节点,下一页详细讲解)

4、客户端应用可以在节点上设置监视器(后续详细讲解)


3.3. 数据结构的图

 

3.4. 节点类型

1Znode有两种类型:

短暂(ephemeral)(断开连接自己删除)

持久(persistent)(断开连接不删除)


2Znode四种形式的目录节点(默认是persistent

PERSISTENT

PERSISTENT_SEQUENTIAL(持久序列/test0000000019

EPHEMERAL

EPHEMERAL_SEQUENTIAL


3、创建znode时设置顺序标识,znode名称后会附加一个值,顺序号是一个单调递增的计数器,由父节点维护


4、在分布式系统中,顺序号可以被用于为所有的事件进行全局排序,这样客户端可以通过顺序号推断事件的顺序


3.5. zookeeper命令行操作

运行 zkcli.sh server <ip>进入命令行工具

 

1、使用 ls 命令来查看当前 ZooKeeper 中所包含的内容:

[zk: 202.115.36.251:2181(CONNECTED) 1] ls  /


2、创建一个新的 znode ,使用 create /zk myData 。这个命令创建了一个新的 znode 节点“ zk ”以及与它关联的字符串:

[zk: 202.115.36.251:2181(CONNECTED) 2] create  /zk "myData“


3、我们运行 get 命令来确认 znode 是否包含我们所创建的字符串:

[zk: 202.115.36.251:2181(CONNECTED) 3] get  /zk

#监听这个节点的变化,当另外一个客户端改变/zk,它会打出下面的

#WATCHER::

#WatchedEvent state:SyncConnected type:NodeDataChanged path:/zk

[zk: localhost:2181(CONNECTED) 4] get /zk watch


4、下面我们通过 set 命令来对 zk 所关联的字符串进行设置:

[zk: 202.115.36.251:2181(CONNECTED) 4] set /zk "zsl“


5、下面我们将刚才创建的 znode 删除:

[zk: 202.115.36.251:2181(CONNECTED) 5] delete /zk


6、删除节点:rmr

[zk: 202.115.36.251:2181(CONNECTED) 5] rmr /zk


3.6.  zookeeper-api应用

3.6.1. 基本使用

org.apache.zookeeper.Zookeeper是客户端入口主类,负责建立与server的会话

它提供了表 1 所示几类主要方法  

功能

描述

create

在本地目录树中创建一个节点

delete

删除一个节点

exists

测试本地是否存在目标节点

get/set data

从目标节点上读取 / 写数据

get/set ACL

获取 / 设置目标节点访问控制列表信息

get children

检索一个子节点上的列表

sync

等待要被传送的数

 

3.6.2. demo增删改查

public class SimpleDemo {
	// 会话超时时间,设置为与系统默认时间一致
	private static final int SESSION_TIMEOUT = 30000;
	// 创建 ZooKeeper 实例
	ZooKeeper zk;
	// 创建 Watcher 实例
	Watcher wh = new Watcher() {
		public void process(org.apache.zookeeper.WatchedEvent event)
		{
			System.out.println(event.toString());
		}
	};
	// 初始化 ZooKeeper 实例
	private void createZKInstance() throws IOException
	{
		zk = new ZooKeeper("weekend01:2181", SimpleDemo.SESSION_TIMEOUT, this.wh);
	}
	private void ZKOperations() throws IOException, InterruptedException, KeeperException
	{
		System.out.println("/n1. 创建 ZooKeeper 节点 (znode : zoo2, 数据: myData2 ,权限: OPEN_ACL_UNSAFE ,节点类型: Persistent");
		zk.create("/zoo2", "myData2".getBytes(), Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
		System.out.println("/n2. 查看是否创建成功: ");
		System.out.println(new String(zk.getData("/zoo2", false, null)));
		System.out.println("/n3. 修改节点数据 ");
		zk.setData("/zoo2", "shenlan211314".getBytes(), -1);
		System.out.println("/n4. 查看是否修改成功: ");
		System.out.println(new String(zk.getData("/zoo2", false, null)));
		System.out.println("/n5. 删除节点 ");
		zk.delete("/zoo2", -1);
		System.out.println("/n6. 查看节点是否被删除: ");
		System.out.println(" 节点状态: [" + zk.exists("/zoo2", false) + "]");
	}
	private void ZKClose() throws InterruptedException
	{
		zk.close();
	}
	public static void main(String[] args) throws IOException, InterruptedException, KeeperException {
		SimpleDemo dm = new SimpleDemo();
		dm.createZKInstance();
		dm.ZKOperations();
		dm.ZKClose();
	}
}


Zookeeper的监听器工作机制

 

 

监听器是一个接口,我们的代码中可以实现Wather这个接口,实现其中的process方法,方法中即我们自己的业务逻辑

 

监听器的注册是在获取数据的操作中实现:

getData(path,watch?)监听的事件是:节点数据变化事件

getChildren(path,watch?)监听的事件是:节点下的子节点增减变化事件

 

4. zookeeper原理

Zookeeper虽然在配置文件中并没有指定masterslave

但是,zookeeper工作时,是有一个节点为leader,其他则为follower

Leader是通过内部的选举机制临时产生的


4.1. zookeeper的选举机制(全新集群paxos)

  以一个简单的例子来说明整个选举的过程.

假设有五台服务器组成的zookeeper集群,它们的id1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生什么.

1) 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态

2) 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1,2还是继续保持LOOKING状态.

3) 服务器3启动,根据前面的理论分析,服务器3成为服务器1,2,3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader.

4) 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1,2,3,4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了.

5) 服务器5启动,4一样,当小弟.


4.2. 非全新集群的选举机制(数据恢复)

那么,初始化的时候,是按照上述的说明进行选举的,但是当zookeeper运行了一段时间之后,有机器down掉,重新选举时,选举过程就相对复杂了。


需要加入数据idleader id和逻辑时钟。

数据id:数据新的id就大,数据每次更新都会更新id

Leader id:就是我们配置的myid中的值,每个机器一个。

逻辑时钟:这个值从0开始递增,每次选举对应一个值,也就是说:  如果在同一次选举中,那么这个值应该是一致的 ;  逻辑时钟值越大,说明这一次选举leader的进程更新.


选举的标准就变成:

1、逻辑时钟小的选举结果被忽略,重新投票

2、统一逻辑时钟后,数据id大的胜出

3、数据id相同的情况下,leader id大的胜出

根据这个规则选出leader

猜你喜欢

转载自blog.csdn.net/weixin_42217819/article/details/80613806
今日推荐