第01天-Java数据结构和算法

001_几个经典的算法面试题(1)

暴力匹配不推荐

KMP算法

分治算法

002_几个经典的算法面试题(2)

回溯算法

图的深度优先遍历算法(DFS) + 贪心算法优化

003_内容介绍和授课方式

数据结构和算法的重要性

课程亮点和授课方式

004_数据结构和算法的关系

005_编程中实际遇到的几个问题

Java代码

小结:需要使用到单链表数据结构

五子棋程序

约瑟夫(Josephu)问题(丢手帕问题)

小结:完成约瑟夫问题,需要使用到单向环形链表 这个数据结构

其它常见算法问题

006_线性结构和非线性结构

数据结构包括:线性结构和非线性结构

线性结构

顺序存储结构地址是连续的

小结:需要掌握顺序存储结构和链式存储结构的区别

非线性结构

非线性结构包括:二维数组,多维数组,广义表,树结构,图结构

007_稀疏数组的应用场景

稀疏sparsearray数组

基本介绍

案例

008_稀疏数组转换的思路分析

应用实例

图解

009_稀疏数组的代码实现

package com.nanjing.sparsearray;

/**
 * 稀疏数组
 *
 * @author xizheng
 * @date 2023-01-28 09:59:13
 */
public class SparseArray {

    public static void main(String[] args) {
        // 创建一个原始的二维数组 11 * 11
        // 0: 表示没有棋子, 1 表示黑子 2 表示蓝子
        int chessArr1[][] = new int[11][11];
        chessArr1[1][2] = 1;
        chessArr1[2][3] = 2;
        // 输出原始的二维数组
        System.out.println("原始的二维数组~~");
        for (int[] row : chessArr1) {
            for (int data : row) {
                System.out.printf("%d\t", data);
            }
            System.out.println();
        }

        // 将二维数组 转 稀疏数组的思路
        // 1. 先遍历二维数组 得到非0数据的个数
        int sum = 0;
        for (int i = 0; i < 11; i++) {
            for (int j = 0; j < 11; j++) {
                if(chessArr1[i][j] != 0) {
                    sum++;
                }
            }
        }
        System.out.println("sum=" + sum);

        //2.创建对应的稀疏数组
        int sparseArr[][] = new int[sum+1][3];
        // 给稀疏数组赋值
        sparseArr[0][0] = 11;
        sparseArr[0][1] = 11;
        sparseArr[0][2] = sum;

        // 遍历二维数组,将非0的值存放到 sparseArr中
        int count = 0; //count 用于记录是第几个非0数据
        for (int i = 0; i < 11; i++) {
            for (int j = 0; j < 11; j++) {
                if(chessArr1[i][j] != 0) {
                    count++;
                    sparseArr[count][0] = i;
                    sparseArr[count][1] = j;
                    sparseArr[count][2] = chessArr1[i][j];
                }
            }
        }

        // 输出稀疏数组的形式
        System.out.println();
        System.out.println("得到稀疏数组为~~~~");
        for (int i = 0; i < sparseArr.length; i++) {
            System.out.printf("%d\t%d\t%d\t\n", sparseArr[i][0], sparseArr[i][1], sparseArr[i][2]);
        }
        System.out.println();

        //将稀疏数组 -->> 恢复成 原始的二维数组
        /**
         *  1.先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的 chessArr2 = int[11][11]
         *  2.在读取稀疏数组后几行的数据,并赋给 原始的二维数组即可
         */

        //1.先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组

        int chessArr2[][] = new int[sparseArr[0][0]][sparseArr[0][1]];

        //2.在读取稀疏数组后几行的数据(从第二行开始),并赋给 原始的二维数组 即可
        for (int i = 1; i < sparseArr.length; i++) {
            chessArr2[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];
        }

        // 输出恢复后的二维数组
        System.out.println();
        System.out.println("恢复后的二维数组");

        for (int[] row : chessArr2) {
            for (int data : row) {
                System.out.printf("%d\t", data);
            }
            System.out.println();
        }
    }
}

010_队列的应用场景和介绍

队列的一个使用场景

队列介绍

011_数组模拟队列的思路分析

数组模拟队列1

数组模拟队列2

012_数组模拟队列代码实现(1)

013_数组模拟队列代码实现(2)

package com.nanjing.queue;

import java.util.Scanner;

/**
 * 数组队列演示
 *
 * @author xizheng
 * @date 2023-01-28 11:16:19
 */
public class ArrayQueueDemo {

    public static void main(String[] args) {
        //测试一把
        //创建一个队列
        ArrayQueue queue = new ArrayQueue(3);
        char key = ' '; //接收用户输入
        Scanner scanner = new Scanner(System.in);//
        boolean loop = true;
        //输出一个菜单
        while (loop) {
            System.out.println("s(show): 显示队列");
            System.out.println("e(exit): 退出程序");
            System.out.println("a(add): 添加数据到队列");
            System.out.println("g(get): 从队列取出数据");
            System.out.println("h(head): 查看队列头的数据");
            key = scanner.next().charAt(0);//接收一个字符
            switch (key) {
                case 's':
                    queue.showQueue();
                    break;
                case 'a':
                    System.out.println("输出一个数");
                    int value = scanner.nextInt();
                    queue.addQueue(value);
                    break;
                case 'g'://取出数据
                    try {
                        int res = queue.getQueue();
                        System.out.printf("取出的数据是%d\n", res);
                    } catch (Exception e) {
                        // TODO: handle exception
                        System.out.println(e.getMessage());
                    }
                    break;
                case 'h'://查看队列头的数据
                    try {
                        int res = queue.headQueue();
                        System.out.printf("队列头的数据是%d\n", res);
                    } catch (Exception e) {
                        // TODO: handle exception
                        System.out.println(e.getMessage());
                    }
                    break;
                case 'e'://退出
                    scanner.close();
                    loop = false;
                    break;
                default:
                    break;
            }
        }

        System.out.println("程序退出~~");
    }
}

//使用数组模拟队列-编写一个ArrayQueue类
class ArrayQueue {
    private int maxSize; //表示数组的最大容量
    private int front; //队列头
    private int rear; //队列尾
    private int[] arr; //该数据用于存放数据,模拟队列

    public ArrayQueue(int arrMaxSize) {
        maxSize = arrMaxSize;
        arr = new int[maxSize];
        front = -1; //指向队列头部,分析出front是指向队列头的前一个位置.
        rear = -1; //指向队列尾,指向队列尾的数据(即就是队列最后一个数据)
    }

    //判断队列是否满
    public boolean isFull() {
        return rear == maxSize - 1;
    }

    //判断队列是否为空
    public boolean isEmpty() {
        return rear == front;
    }

    //添加数据到队列
    public void addQueue(int n) {
        //判断队列是否满
        if(isFull()) {
            System.out.println("队列满,不能加入数据~");
            return;
        }
        rear++; //让rear后移
        arr[rear] = n;
    }

    //获取队列的数据,出队列
    public int getQueue() {
        //判断队列是否空
        if(isEmpty()) {
            //通过抛出异常
            throw new RuntimeException("队列空,不能取数据");
        }
        front++; //front后移
        return arr[front];
    }

    //显示队列的所有数据
    public void showQueue() {
        //遍历
        if(isEmpty()) {
            System.out.println("队列空的,没有数据~~");
            return;
        }
        for (int i = 0; i < arr.length; i++) {
            System.out.printf("arr[%d]=%d\n", i, arr[i]);
        }
    }

    //显示队列的头数据,注意不是取出数据
    public int headQueue() {
        //判断
        if(isEmpty()) {
            throw new RuntimeException("队列空的,没有数据~~");
        }
        return arr[front + 1];
    }
}

问题分析并优化

  1. 目前数组使用一次就不能用了,没有达到复用的效果

  1. 将这个数组使用算法,改进成一个环形的队列 取模:%

014_数组模拟环形队列思路分析图

数组模拟环形队列

图解

015_数组模拟环形队列实现

package nanjing.queue;

import java.util.Scanner;

/**
 * 循环数组队列演示
 *
 * @author xizheng
 * @date 2023-01-28 13:51:03
 */
public class CircleArrayQueueDemo {

    public static void main(String[] args) {

        //测试一把
        System.out.println("测试数组模拟环形队列的案例~~~");

        //创建一个环形队列
        CircleArray queue = new CircleArray(4); //说明设置4, 其队列的有效数据最大是3
        char key = ' ';//接收用户输入
        Scanner scanner = new Scanner(System.in);
        boolean loop = true;
        // 输出一个菜单
        while (loop) {
            System.out.println("s(show): 显示队列");
            System.out.println("e(exit): 退出程序");
            System.out.println("a(add): 添加数据到队列");
            System.out.println("g(get): 从队列取出数据");
            System.out.println("h(head): 查看队列头的数据");
            key = scanner.next().charAt(0);//接收一个字符
            switch (key) {
                case 's':
                    queue.showQueue();
                    break;
                case 'a':
                    System.out.println("输出一个数");
                    int value = scanner.nextInt();
                    queue.addQueue(value);
                    break;
                case 'g'://取出数据
                    try {
                        int res = queue.getQueue();
                        System.out.printf("取出的数据是%d\n", res);
                    } catch (Exception e) {
                        // TODO: handle exception
                        System.out.println(e.getMessage());
                    }
                    break;
                case 'h': // 查看队列头的数据
                    try {
                        int res = queue.headQueue();
                        System.out.printf("队列头的数据是%d\n", res);
                    } catch (Exception e) {
                        // TODO: handle exception
                        System.out.println(e.getMessage());
                    }
                    break;
                case 'e': // 退出
                    scanner.close();
                    loop = false;
                    break;
                default:
                    break;
            }
        }
        System.out.println("程序退出~~");
    }
}

class CircleArray {
    private int maxSize; //表示数组的最大容量
    //front 变量的含义做一个调整: front 就指向队列的第一个元素,也就是说 arr[front] 就是队列的第一个元素
    //front 的初始值 = 0
    private int front;
    //rear 变量的含义做一个调整: rear 指向队列的最后一个元素的后一个位置。因为希望空出一个空间做为约定
    //rear 的初始值 = 0
    private int rear; //队列尾
    private int[] arr; //该数组用于存放数据,模拟队列

    public CircleArray(int arrMaxSize) {
        maxSize = arrMaxSize;
        arr = new int[maxSize];
    }

    //判断队列是否满
    public boolean isFull() {
        return (rear + 1) % maxSize == front;
    }

    //判断队列是否为空
    public boolean isEmpty() {
        return rear == front;
    }

    //添加数据到队列
    public void addQueue(int n) {
        // 判断队列是否满
        if(isFull()) {
            System.out.println("队列满,不能加入数据~");
            return;
        }
        //直接将数据加入
        arr[rear] = n;
        //将 rear 后移, 这里必须考虑取模
        rear = (rear + 1) % maxSize;
    }

    //获取队列的数据,出队列
    public int getQueue() {
        // 判断队列是否空
        if(isEmpty()) {
            //通过抛出异常
            throw new RuntimeException("队列空,不能取数据");
        }
        // 这里需要分析出 front是指向队列的第一个元素
        // 1、先把 front对应的值保留到一个临时变量
        // 2、将 front 后移,考虑取模
        // 3、将临时保存的变量返回
        int value = arr[front];
        front = (front + 1) % maxSize;
        return value;
    }

    // 显示队列的所有数据
    public void showQueue() {
        // 遍历
        if(isEmpty()) {
            System.out.println("队列空的,没有数据~~");
            return;
        }
        // 思路:从front开始遍历,遍历多少个元素
        // 动脑筋
        for(int i = front; i < front + size(); i++) {
            System.out.printf("arr[%d]=%d\n", i % maxSize, arr[i % maxSize]);
        }
    }

    //求出当前队列有效数据的个数
    public int size() {
        // rear = 2
        // front = 1
        // maxSize = 3
        return (rear + maxSize - front) % maxSize;
    }

    //显示队列的头数据, 注意不是取出数据
    public int headQueue() {
        // 判断
        if(isEmpty()) {
            throw new RuntimeException("队列空的,没有数据~~");
        }
        return arr[front];
    }
}

016_单链表介绍和内存布局

链表(Linked List)介绍

逻辑结构

017_单链表创建和遍历的分析实现

单链表的应用实例

图解

代码实现

package nanjing.linkedlist;

/**
 * 单链表应用实例
 *
 * @author xizheng
 * @date 2023-01-28 15:03:26
 */
public class SingleLinkedListDemo {

    public static void main(String[] args) {
        //进行测试
        //先创建节点
        HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
        HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
        HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
        HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");

        //创建要给的链表
        SingleLinkedList singleLinkedList = new SingleLinkedList();

        //加入
        singleLinkedList.add(hero1);
        singleLinkedList.add(hero4);
        singleLinkedList.add(hero2);
        singleLinkedList.add(hero3);
        //显示一把
        singleLinkedList.list();
    }
}

//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
    //先初始化一个头节点,头节点不要动,不存放具体的数据
    private HeroNode head = new HeroNode(0, "", "");

    //添加节点到单向链表
    //思路,当不考虑编号顺序时
    //1、找到当前链表的最后节点
    //2、将最后这个节点的next 指向 新的节点
    public void add(HeroNode heroNode) {

        //因为head节点不能动,因此我们需要一个辅助遍历 temp
        HeroNode temp = head;
        while (true) {
            //找到链表的最后
            if(temp.next == null) {
                break;
            }
            //如果没有找到最后,将temp后移
            temp = temp.next;
        }
        //当退出while循环时,temp就指向了链表的最后
        //将最后这个节点的next指向 新的节点
        temp.next = heroNode;
    }

    //显示链表[遍历]
    public void list() {
        //判断链表是否为空
        if(head.next == null) {
            System.out.println("链表为空");
            return;
        }
        //因为头节点,不能动,因此我们需要一个辅助变量来遍历
        HeroNode temp = head.next;
        while (true) {
            //判断是否到链表最后
            if(temp == null) {
                break;
            }
            //输出节点的信息
            System.out.println(temp);
            //将temp后移,一定小心
            temp = temp.next;
        }
    }
}


//定义HeroNode, 每个HeroNode 对象就是一个节点
class HeroNode {
    public int no;
    public String name;
    public String nickname;
    public HeroNode next; //指向下一个节点
    //构造器
    public HeroNode(int no, String name, String nickname) {
        this.no = no;
        this.name = name;
        this.nickname = nickname;
    }
    //为了显示方法,我们重写toString

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                ", nickname='" + nickname + '\'' +
                '}';
    }
}

018_单链表按顺序插入节点

图解

代码实现

package nanjing.linkedlist;

/**
 * 单链表应用实例
 *
 * @author xizheng
 * @date 2023-01-28 15:03:26
 */
public class SingleLinkedListDemo {

    public static void main(String[] args) {
        //进行测试
        //先创建节点
        HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
        HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
        HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
        HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");

        //创建要给的链表
        SingleLinkedList singleLinkedList = new SingleLinkedList();

        //加入
//        singleLinkedList.add(hero1);
//        singleLinkedList.add(hero4);
//        singleLinkedList.add(hero2);
//        singleLinkedList.add(hero3);
        //加入按照编号的顺序
        singleLinkedList.addByOrder(hero1);
        singleLinkedList.addByOrder(hero4);
        singleLinkedList.addByOrder(hero2);
        singleLinkedList.addByOrder(hero3);
        //显示一把
        singleLinkedList.list();
    }
}

//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
    //先初始化一个头节点,头节点不要动,不存放具体的数据
    private HeroNode head = new HeroNode(0, "", "");

    //添加节点到单向链表
    //思路,当不考虑编号顺序时
    //1、找到当前链表的最后节点
    //2、将最后这个节点的next 指向 新的节点
    public void add(HeroNode heroNode) {

        //因为head节点不能动,因此我们需要一个辅助遍历 temp
        HeroNode temp = head;
        while (true) {
            //找到链表的最后
            if(temp.next == null) {
                break;
            }
            //如果没有找到最后,将temp后移
            temp = temp.next;
        }
        //当退出while循环时,temp就指向了链表的最后
        //将最后这个节点的next指向 新的节点
        temp.next = heroNode;
    }

    //第二种方式在添加英雄时,根据排名将英雄插入到指定位置
    //(如果有这个排名,则添加是吧,并给出提示)
    public void addByOrder(HeroNode heroNode) {
        //因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
        //因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
        HeroNode temp = head;
        boolean flag = false;//false标志添加的编号是否存在,默认为false
        while (true) {
            if(temp.next == null) {//说明temp已经在链表的最后
                break;
            }
            if(temp.next.no > heroNode.no) {//位置找到,就在temp的后面插入
                break;
            } else if(temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
                flag = true; //说明编号存在
                break;
            }
            temp = temp.next;//后移,遍历当前链表
        }
        //判断flag 的值
        if(flag) { //不能添加,说明编号存在
            System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
        } else {
            //插入到链表中,temp的后面
            heroNode.next = temp.next;
            temp.next = heroNode;
        }
    }

    //显示链表[遍历]
    public void list() {
        //判断链表是否为空
        if(head.next == null) {
            System.out.println("链表为空");
            return;
        }
        //因为头节点,不能动,因此我们需要一个辅助变量来遍历
        HeroNode temp = head.next;
        while (true) {
            //判断是否到链表最后
            if(temp == null) {
                break;
            }
            //输出节点的信息
            System.out.println(temp);
            //将temp后移,一定小心
            temp = temp.next;
        }
    }
}


//定义HeroNode, 每个HeroNode 对象就是一个节点
class HeroNode {
    public int no;
    public String name;
    public String nickname;
    public HeroNode next; //指向下一个节点
    //构造器
    public HeroNode(int no, String name, String nickname) {
        this.no = no;
        this.name = name;
        this.nickname = nickname;
    }
    //为了显示方法,我们重写toString

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                ", nickname='" + nickname + '\'' +
                '}';
    }
}

019_单链表节点的修改

package nanjing.linkedlist;

/**
 * 单链表应用实例
 *
 * @author xizheng
 * @date 2023-01-28 15:03:26
 */
public class SingleLinkedListDemo {

    public static void main(String[] args) {
        //进行测试
        //先创建节点
        HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
        HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
        HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
        HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");

        //创建要给的链表
        SingleLinkedList singleLinkedList = new SingleLinkedList();

        //加入
//        singleLinkedList.add(hero1);
//        singleLinkedList.add(hero4);
//        singleLinkedList.add(hero2);
//        singleLinkedList.add(hero3);
        //加入按照编号的顺序
        singleLinkedList.addByOrder(hero1);
        singleLinkedList.addByOrder(hero4);
        singleLinkedList.addByOrder(hero2);
        singleLinkedList.addByOrder(hero3);
        //显示一把
        singleLinkedList.list();

        //测试修改节点的代码
        HeroNode newHeroNode = new HeroNode(2, "小卢", "玉麒麟~~");
        singleLinkedList.update(newHeroNode);

        System.out.println("修改后的链表情况~~");
        singleLinkedList.list();
    }
}

//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
    //先初始化一个头节点,头节点不要动,不存放具体的数据
    private HeroNode head = new HeroNode(0, "", "");

    //添加节点到单向链表
    //思路,当不考虑编号顺序时
    //1、找到当前链表的最后节点
    //2、将最后这个节点的next 指向 新的节点
    public void add(HeroNode heroNode) {

        //因为head节点不能动,因此我们需要一个辅助遍历 temp
        HeroNode temp = head;
        while (true) {
            //找到链表的最后
            if(temp.next == null) {
                break;
            }
            //如果没有找到最后,将temp后移
            temp = temp.next;
        }
        //当退出while循环时,temp就指向了链表的最后
        //将最后这个节点的next指向 新的节点
        temp.next = heroNode;
    }

    //第二种方式在添加英雄时,根据排名将英雄插入到指定位置
    //(如果有这个排名,则添加是吧,并给出提示)
    public void addByOrder(HeroNode heroNode) {
        //因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
        //因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
        HeroNode temp = head;
        boolean flag = false;//false标志添加的编号是否存在,默认为false
        while (true) {
            if(temp.next == null) {//说明temp已经在链表的最后
                break;
            }
            if(temp.next.no > heroNode.no) {//位置找到,就在temp的后面插入
                break;
            } else if(temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
                flag = true; //说明编号存在
                break;
            }
            temp = temp.next;//后移,遍历当前链表
        }
        //判断flag 的值
        if(flag) { //不能添加,说明编号存在
            System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
        } else {
            //插入到链表中,temp的后面
            heroNode.next = temp.next;
            temp.next = heroNode;
        }
    }

    //修改节点的信息,根据no编号来修改,即no编号不能改.
    //说明
    //1.根据 newHeroNode的 no 来修改即可
    public void update(HeroNode newHeroNode) {
        //判断是否空
        if(head.next == null) {
            System.out.printf("链表为空");
            return;
        }
        //找到需要修改的节点,根据no编号
        //定义一个辅助变量
        HeroNode temp = head.next;
        boolean flag = false;//表示是否找到该节点
        while (true) {
            if(temp == null) {
                break;//已经遍历完链表
            }
            if(temp.no == newHeroNode.no) {
                //找到
                flag = true;
                break;
            }
            temp = temp.next;
        }
        //根据flag 判断是否找到要修改的节点
        if(flag) {
            temp.name = newHeroNode.name;
            temp.nickname = newHeroNode.nickname;
        } else { //没有找到
            System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
        }
    }

    //显示链表[遍历]
    public void list() {
        //判断链表是否为空
        if(head.next == null) {
            System.out.println("链表为空");
            return;
        }
        //因为头节点,不能动,因此我们需要一个辅助变量来遍历
        HeroNode temp = head.next;
        while (true) {
            //判断是否到链表最后
            if(temp == null) {
                break;
            }
            //输出节点的信息
            System.out.println(temp);
            //将temp后移,一定小心
            temp = temp.next;
        }
    }
}


//定义HeroNode, 每个HeroNode 对象就是一个节点
class HeroNode {
    public int no;
    public String name;
    public String nickname;
    public HeroNode next; //指向下一个节点
    //构造器
    public HeroNode(int no, String name, String nickname) {
        this.no = no;
        this.name = name;
        this.nickname = nickname;
    }
    //为了显示方法,我们重写toString

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                ", nickname='" + nickname + '\'' +
                '}';
    }
}

020_单链表节点的删除和小结

图解

代码实现

package nanjing.linkedlist;

/**
 * 单链表应用实例
 *
 * @author xizheng
 * @date 2023-01-28 15:03:26
 */
public class SingleLinkedListDemo {

    public static void main(String[] args) {
        //进行测试
        //先创建节点
        HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
        HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
        HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
        HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");

        //创建要给的链表
        SingleLinkedList singleLinkedList = new SingleLinkedList();

        //加入
//        singleLinkedList.add(hero1);
//        singleLinkedList.add(hero4);
//        singleLinkedList.add(hero2);
//        singleLinkedList.add(hero3);
        //加入按照编号的顺序
        singleLinkedList.addByOrder(hero1);
        singleLinkedList.addByOrder(hero4);
        singleLinkedList.addByOrder(hero2);
        singleLinkedList.addByOrder(hero3);
        //显示一把
        singleLinkedList.list();

        //测试修改节点的代码
        HeroNode newHeroNode = new HeroNode(2, "小卢", "玉麒麟~~");
        singleLinkedList.update(newHeroNode);

        System.out.println("修改后的链表情况~~");
        singleLinkedList.list();

        //删除一个节点
        singleLinkedList.del(1);
        singleLinkedList.del(4);
        System.out.println("删除后的链表情况~~");
        singleLinkedList.list();
    }
}

//定义SingleLinkedList 管理我们的英雄
class SingleLinkedList {
    //先初始化一个头节点,头节点不要动,不存放具体的数据
    private HeroNode head = new HeroNode(0, "", "");

    //添加节点到单向链表
    //思路,当不考虑编号顺序时
    //1、找到当前链表的最后节点
    //2、将最后这个节点的next 指向 新的节点
    public void add(HeroNode heroNode) {

        //因为head节点不能动,因此我们需要一个辅助遍历 temp
        HeroNode temp = head;
        while (true) {
            //找到链表的最后
            if(temp.next == null) {
                break;
            }
            //如果没有找到最后,将temp后移
            temp = temp.next;
        }
        //当退出while循环时,temp就指向了链表的最后
        //将最后这个节点的next指向 新的节点
        temp.next = heroNode;
    }

    //第二种方式在添加英雄时,根据排名将英雄插入到指定位置
    //(如果有这个排名,则添加是吧,并给出提示)
    public void addByOrder(HeroNode heroNode) {
        //因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
        //因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
        HeroNode temp = head;
        boolean flag = false;//false标志添加的编号是否存在,默认为false
        while (true) {
            if(temp.next == null) {//说明temp已经在链表的最后
                break;
            }
            if(temp.next.no > heroNode.no) {//位置找到,就在temp的后面插入
                break;
            } else if(temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
                flag = true; //说明编号存在
                break;
            }
            temp = temp.next;//后移,遍历当前链表
        }
        //判断flag 的值
        if(flag) { //不能添加,说明编号存在
            System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
        } else {
            //插入到链表中,temp的后面
            heroNode.next = temp.next;
            temp.next = heroNode;
        }
    }

    //修改节点的信息,根据no编号来修改,即no编号不能改.
    //说明
    //1.根据 newHeroNode的 no 来修改即可
    public void update(HeroNode newHeroNode) {
        //判断是否空
        if(head.next == null) {
            System.out.printf("链表为空");
            return;
        }
        //找到需要修改的节点,根据no编号
        //定义一个辅助变量
        HeroNode temp = head.next;
        boolean flag = false;//表示是否找到该节点
        while (true) {
            if(temp == null) {
                break;//已经遍历完链表
            }
            if(temp.no == newHeroNode.no) {
                //找到
                flag = true;
                break;
            }
            temp = temp.next;
        }
        //根据flag 判断是否找到要修改的节点
        if(flag) {
            temp.name = newHeroNode.name;
            temp.nickname = newHeroNode.nickname;
        } else { //没有找到
            System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
        }
    }

    //删除节点
    //思路
    //1. head 不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点
    //2. 说明我们在比较时,是temp.next.no 和  需要删除的节点的no比较
    public void del(int no) {
        HeroNode temp = head;
        boolean flag = false; // 标志是否找到待删除节点的
        while(true) {
            if(temp.next == null) { //已经到链表的最后
                break;
            }
            if(temp.next.no == no) {
                //找到的待删除节点的前一个节点temp
                flag = true;
                break;
            }
            temp = temp.next; //temp后移,遍历
        }
        //判断flag
        if(flag) { //找到
            //可以删除
            temp.next = temp.next.next;
        }else {
            System.out.printf("要删除的 %d 节点不存在\n", no);
        }
    }

    //显示链表[遍历]
    public void list() {
        //判断链表是否为空
        if(head.next == null) {
            System.out.println("链表为空");
            return;
        }
        //因为头节点,不能动,因此我们需要一个辅助变量来遍历
        HeroNode temp = head.next;
        while (true) {
            //判断是否到链表最后
            if(temp == null) {
                break;
            }
            //输出节点的信息
            System.out.println(temp);
            //将temp后移,一定小心
            temp = temp.next;
        }
    }
}


//定义HeroNode, 每个HeroNode 对象就是一个节点
class HeroNode {
    public int no;
    public String name;
    public String nickname;
    public HeroNode next; //指向下一个节点
    //构造器
    public HeroNode(int no, String name, String nickname) {
        this.no = no;
        this.name = name;
        this.nickname = nickname;
    }
    //为了显示方法,我们重写toString

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                ", nickname='" + nickname + '\'' +
                '}';
    }
}

猜你喜欢

转载自blog.csdn.net/xizheng2018/article/details/128774616
今日推荐