C++学习之函数模板的使用详解

C++函数模板

1

2

3

4

5

6

7

8

template<typename T>

void Swap(T &a ,T &b)

{

    T temp;

    temp = a;

    a = b;

    b = temp;

}

在使用模板函数时,编译器根据实际的类型生成相应的函数定义。

重载的模板

并非所有的类型都使用相同的算法,可以像重载常规函数那样重载模板函数定义。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

template<typename T>

void Swap(T &a ,T &b); //#1

template<typename T>

void Swap(T *a ,T *b,int n);//#2 最后一个参数是具体类型

int main()

{

    int i =10,j=20;

    Swap(i,j);//使用#1

     

    const int Lim = 8;

    int d1[Lim]={0,1,2,3,4,5,6,7};

    int d2[Lim]={7,6,5,4,3,2,1,0};

    Swap(d1,d2,Lim);//使用#2

}

template<typename T>

void Swap(T &a ,T &b)

{

    T temp;

    temp = a;

    a = b;

    b = temp;

}

template<typename T>

void Swap(T *a ,T *b,int n)

{

    T temp;

    for(int i=0;i<n;i++)

    {

        temp =a[i];

        a[i]=b[i];

        b[i]=temp;

    }

}

模板局限性

某些时候,类型T的相应操作只适用于数组,如果T为结构体则模板函数便不成立

同样,如if(a>b),如果T为结构,则>便不成立

解决方案:

  • 重载运算符号
  • 为特定类型提供具体化模板定义

显示具体化

当编译器找到与函数调用匹配的具体化定义时,将使用该定义,不再寻找模板。

  • 对于给定的函数名,可以有非模板函数、模板函数和显示具体化模板函数以及各自的重载版本。
  • 显示具体化的原型和定义以template<>开头,并通过名称来指出类型
  • 调用顺序是:非模板函数>具体化模板函数>模板函数

1

2

3

4

5

6

7

8

void Swap(job& ,job&);

template <typename T>

void Swap(T&,T&);

template<> void Swap<job>(job& ,job&);//显示具体化

//Swap<job>中<job>是可选的,因为函数的参数类型表明,这是job的一个具体化,所以也可以这样写:

template<> void Swap(job& ,job&);

实例化和具体化

注意:函数模板并不会生成函数定义,他只是生成一个用于生成函数定义的方案,编译器使用模板为特定的类型生成函数定义时,得到的是模板实例。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

template<typename T>

void Swap(T &a ,T &b);

int a =10,b=20;

Swap(a,b);//因为提供了int类型的参数,所以自动生成了int类型的模板实例。这样是==隐式实例化==

//也可以直接命令编译器创建特定的实例

//显示实例化

template void Swap<int>(int &,int &);//使用Swap()模板生成int类型的函数定义

//显示具体化

template<> void Swap<int>(int& ,int&);

template<> void Swap(int& ,int&);

//区别在于:具体化是不使用Swap()模板函数生成函数定义,而是使用专门为int类型显示定义的函数定义

//简单的理解,具体化是对函数的声明,而实例化是对模板函数的使用

1

2

3

4

5

6

7

8

9

10

11

12

13

template<typename T>

T Add(T a,T b)

{

    return a+b;

}

int m=6;

double x=10.5;

Add<double>(x,m); //与Add(x,m)不匹配,因为一个是int一个是double

                  //通过Add<double>实例化,可强制将m转为double

//但是同样的对Swap便不能成功,因为Swap中使用的是引用类型

Swap<double>(m,x);//double& 不能指向int

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

//使用案例

template <typename T>

void Swap(T &,T &);

template<> void Swap<job>(job&,job&);//具体化

int mian()

{

    template void Swap<char>(char& ,char&);

     

    short a,b;

    Swap(a,b);//隐式实例化

     

    job n,m;

    Swap(n,m);//显示具体化

     

    char g,h;

    Swap(g,h);//显示实例化

}

模板函数类型的确定

1

2

3

4

5

template<class T1,class T2>

void fun(T1 x,T2 y)

{

    ?type? s=x+y; //因为是模板函数,此时?type?类型不确定

}

C++11增加decltype关键字

1

2

3

4

5

template<class T1,class T2>

void fun(T1 x,T2 y)

{

    decltype(x+y) s=x+y; //s类型与x+y的类型一致

}

使用decltype(expression) var 的步骤:

1.如果expression没有用括号括起来,则var与expression类型相同,包括const等限定符

1

2

3

4

5

6

double x =5.5;

double& z =x;

const double* pd;

decltype(x) w; //w为double类型

decltype(z) u; //u为double& 类型

decltype(pd) v; //v为const double* 类型

2.如果expression是一个函数调用,则var与返回值类型相同。并不会实际调用函数,编译器通过查看原型来确定返回值类型

3.如果expression是一个左值,则var为指向其类型的引用。常见的情况如下:

1

2

3

4

5

6

double x = 4.5;

decltype((x)) r = x;//r是double&类型

decltype(x) r = x;//r是double类型

//括号不会改变expression的值和左值性

//可理解为加括号仅仅是decltype声明引用的一种方式

4.如果前3条都不满足,则var与expression类型相同

1

2

3

4

5

6

int j=3;

int &k=j;

int &n=j;

decltype(j+6) x; //x是int

decltype(k+n) y;//y是int ,虽然k和n是引用,但是k+n不是引用是2个int的和

如果多次声明,可以结合typedefdecltype

1

2

3

typedef decltype(x+y) xytype;

xytype z = x+y;

xytype arr[10];

但是某些需定义返回值类型的函数模板任然不能得到解决,如:

1

2

3

4

5

template<class T1,class T2>

?type? fun(T1 x,T2 y) //此时无法确定类型

{

    return x+y;

}

C++新增语法auto h(int x,float y) -> double,这称为后置返回类型,auto是一个占位符

1

2

3

4

5

template<class T1,class T2>

auto fun(T1 x,T2 y)->decltype(x+y) //后置类型使用decltype

{

    return x+y;

}

猜你喜欢

转载自blog.csdn.net/sinat_40572875/article/details/129303035