pytorch如何调用m1芯片的显卡进行深度模型训练

加速原理

苹果有自己的一套GPU实现API — Metal,而Pytorch此次的加速就是基于Metal,具体来说,使用苹果的Metal Performance Shaders(MPS)作为PyTorch的后端,可以实现加速GPU训练。MPS后端扩展了PyTorch框架,提供了在Mac上设置和运行操作的脚本和功能。MPS通过针对每个Metal GPU系列的独特特性进行微调的内核来优化计算性能。新设备在MPS图形框架和MPS提供的调整内核上映射机器学习计算图形和基元。

因此此次新增的的device名字是mps, 使用方式与cuda 类似,例如:

import torch
foo = torch.rand(1, 3, 224, 224).to('mps')

device = torch.device('mps')
foo = foo.to(device)

此外发现,Pytorch已经支持下面这些device了,确实出乎意料:

cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, 
ideep, hip, ve, ort, mps, xla, lazy, vulkan, meta, hpu

环境配置

为了使用这个实验特性,你需要满足下面三个条件:

  1. 有一台配有Apple Silicon 系列芯片(M1, M1 Pro, M1 Pro Max, M1 Ultra)的Mac笔记本

  2. 安装了arm64位的Python

  3. 安装了最新的nightly 版本的Pytorch

假设机器已经准备好。我们可以从这里下载arm64版本的miniconda(文件名是Miniconda3 macOS Apple M1 64-bit bash,基于它安装的Python环境就是arm64位的。下载和安装Minicoda的命令如下:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh 

chmod +x Miniconda3-latest-MacOSX-arm64.sh 

./Miniconda3-latest-MacOSX-arm64.sh 

按照说明来操作即可,安装完成后,创建一个虚拟环境,通过检查platform.uname()[4] 是不是为arm64 来检查Python的架构:

conda config --env --set always_yes true
conda create -n try-mps python=3.8
conda activate try-mps
python -c "import platform; print(platform.uname()[4])"

如果最后一句命令的输出为arm64 ,说明Python版本OK,可以继续往下走了。

第三步,安装nightly版本的Pytorch,在开启的虚拟环境中进行下面的操作:

python -m pip  install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

执行完成后通过下面的命令检查MPS后端是否可用:

python -c "import torch;print(torch.backends.mps.is_built())"

如果输出为True ,说明MPS后端可用,可以继续往下走了。

跑一个MNIST

基于Pytorch官方的example中的MNIST例子,修改了来测试cpu和mps模式,代码如下:

from __future__ import print_function
import argparse
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--epochs', type=int, default=1, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--use_gpu', action='store_true', default=False,
                        help='enable MPS')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_gpu = args.use_gpu

    torch.manual_seed(args.seed)

    device = torch.device("mps" if args.use_gpu else "cpu")

    train_kwargs = {
    
    'batch_size': args.batch_size}
    
    if use_gpu:
        cuda_kwargs = {
    
    'num_workers': 1,
                       'pin_memory': True,
                       'shuffle': True}
        train_kwargs.update(cuda_kwargs)

    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])
    dataset1 = datasets.MNIST('../data', train=True, download=True,
                       transform=transform)
    dataset2 = datasets.MNIST('../data', train=False,
                       transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)

    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        scheduler.step()


if __name__ == '__main__':
    t0 = time.time()
    main()
    t1 = time.time()
    print('time_cost:', t1 - t0)

测试CPU:

python main.py

测试MPS:

python main --use_gpu

在我的M1机器上测试发现,训一个Epoch的MNIST,CPU耗时149.6s,而使用MPS的话耗时18.4s。提升效果显著,也可能是cpu跑的太拉了,总而言之,可以用mps训练模型就一定要用mps,cpu太慢了。

猜你喜欢

转载自blog.csdn.net/weixin_45277161/article/details/130849661