由拉氏变换直接写出时域函数的简便方法

众所周知,拉普拉斯变换可以将时域函数 x ( t ) x(t) x(t)转换到频域内 X ( s ) X(s) X(s)
x ( t ) ⟹ X ( s ) , o r X ( s ) = L { x ( t ) } x(t) \Longrightarrow X(s), \qquad or \qquad X(s) = \mathcal{L} \left\lbrace x(t) \right\rbrace x(t)X(s),orX(s)=L{ x(t)}但当我们知道了输出信号的拉氏变换 X ( s ) X(s) X(s)后,如何能快速得到其对应的时域形式呢?

1. 因式分解

一种常用的方法是因式分解,将 X ( s ) X(s) X(s)分解为若干简单分式加和的形式,这些简单分式简单到可以直接写出其对应的时域形式。如:
X ( s ) = s + 2 s 2 + 4 s + 3 = s + 2 ( s + 1 ) ( s + 3 ) = 1 2 [ 1 s + 1 + 1 s + 3 ] \begin{aligned} X(s) &= \frac{s+2}{s^2 + 4s + 3} \\ &= \frac{s+2}{\left( s+1 \right) \left( s+3 \right)} \\ &= \frac{1}{2} \left[ \frac{1}{s+1} + \frac{1}{s+3} \right] \end{aligned} X(s)=s2+4s+3s+2=(s+1)(s+3)s+2=21[s+11+s+31]则可以立即写出其时域形式
x ( t ) = L − 1 { X ( s ) } = 1 2 e − t + 1 2 e − 3 t x(t) = \mathcal{L}^{-1} \left\lbrace X(s) \right\rbrace = \frac{1}{2} e^{-t} + \frac{1}{2} e^{-3t} x(t)=L1{ X(s)}=21et+21e3t因式分解的过程可以用留数定理来做。设
X ( s ) = s + 2 s 2 + 4 s + 3 = s + 2 ( s + 1 ) ( s + 3 ) = A s + 1 + B s + 3 = A ( s + 3 ) + B ( s + 1 ) ( s + 1 ) ( s + 3 ) \begin{aligned} X(s) &= \frac{s+2}{s^2 + 4s + 3} \\ &= \frac{s+2}{\left( s+1 \right) \left( s+3 \right)} \\ &= \frac{A}{s+1} + \frac{B}{s+3} \\ &= \frac{A\left( s+3 \right) + B \left( s+1 \right)}{\left( s+1 \right) \left( s+3 \right)} \end{aligned} X(s)=s2+4s+3s+2=(s+1)(s+3)s+2=s+1A+s+3B=(s+1)(s+3)A(s+3)+B(s+1) A ( s + 3 ) + B ( s + 1 ) = s + 2 A\left( s+3 \right) + B \left( s+1 \right) = s+2 A(s+3)+B(s+1)=s+2留数定理的原理是,依次把 X ( s ) X(s) X(s)的根代入,以求得 A , B A, B A,B
1) 当 s = − 1 s=-1 s=1时, A ( − 1 + 3 ) + B ( − 1 + 1 ) = − 1 + 2 A\left( -1+3 \right) + B \left( -1+1 \right) = -1+2 A(1+3)+B(1+1)=1+2得到 A = 1 2 A = \frac{1}{2} A=21
2) 当 s = − 3 s=-3 s=3时, A ( − 3 + 3 ) + B ( − 3 + 1 ) = − 3 + 2 A\left( -3+3 \right) + B \left( -3+1 \right) = -3+2 A(3+3)+B(3+1)=3+2得到 B = 1 2 B = \frac{1}{2} B=21

这种方法的缺点很明显:因式分解的过程冗长复杂,系数 A , B A, B A,B的求解繁琐。

2. 简便方法

幸运的是,笔者在这里列出3个公式,可以解决所有的由复数域向时域转变的问题,甚至只需要记其中一个即可。
X ( s ) = A ( s ) B ( s ) X(s) = \frac{A(s)}{B(s)} X(s)=B(s)A(s)

1) 没有重根、没有零极点情况

B ( s ) = ( s − s 1 ) ( s − s 2 ) ⋯ ( s − s n ) B(s) = (s-s_1) (s-s_2) \cdots (s - s_n) B(s)=(ss1)(ss2)(ssn)时,共 n n n个极点,且每个极点都不同,且没有重根。则时域函数为
x ( t ) = ∑ k = 1 n A ( s ) B ′ ( s k ) e s k t (1) x(t) = \sum _{k=1}^n \frac{A(s)}{B' \left( s_k \right) } e^{s_k t} \tag{1} x(t)=k=1nB(sk)A(s)eskt(1)举例:对于
X ( s ) = s + 2 s 2 + 5 s + 4 = s + 2 ( s + 4 ) ( s + 1 ) X(s) = \frac{s+2}{s^2 + 5s + 4} = \frac{s+2}{(s+4)(s+1)} X(s)=s2+5s+4s+2=(s+4)(s+1)s+2可见 A ( s ) = s + 2 , B ( s ) = ( s + 4 ) ( s + 1 ) A(s) = s+2, \quad B(s) = (s+4)(s+1) A(s)=s+2,B(s)=(s+4)(s+1),两个极点 s 1 = − 4 , s 2 = − 1 s_1 = -4, s_2 = -1 s1=4,s2=1。代入式(1):
x ( t ) = ∑ k = 1 n A ( s ) B ′ ( s k ) e s k t = A ( s 1 ) B ′ ( s 1 ) e s 1 t + A ( s 2 ) B ′ ( s 2 ) e s 2 t = s 1 + 2 2 s 1 + 5 e s 1 t + s 2 + 2 2 s 2 + 5 e s 2 t = 2 3 e − 4 t + 1 3 e − t \begin{aligned} x(t) &= \sum _{k=1}^n \frac{A(s)}{B' \left( s_k \right) } e^{s_k t} \\ &= \frac{A(s_1)}{B' \left( s_1 \right) } e^{s_1 t} + \frac{A(s_2)}{B' \left( s_2 \right) } e^{s_2 t} \\ &= \frac{s_1 + 2}{2s_1 + 5} e^{s_1 t} + \frac{s_2 + 2}{2s_2 + 5} e^{s_2 t} \\ &= \frac{2}{3} e^{-4t} + \frac{1}{3} e^{-t} \end{aligned} x(t)=k=1nB(sk)A(s)eskt=B(s1)A(s1)es1t+B(s2)A(s2)es2t=2s1+5s1+2es1t+2s2+5s2+2es2t=32e4t+31et

2) 没有重根,但是具有零极点

具有如下形式
X ( s ) = A ( s ) s B ( s ) X(s) = \frac{A(s)}{s B(s)} X(s)=sB(s)A(s)则时域为
x ( t ) = A ( 0 ) B ( 0 ) + ∑ k = 1 n A ( s k ) s k B ′ ( s k ) e s k t (2) x(t) = \frac{A(0)}{B(0)} + \sum _{k=1}^n \frac{A \left( s_k \right)}{s_k B' \left( s_k \right)} e^{s_k t} \tag{2} x(t)=B(0)A(0)+k=1nskB(sk)A(sk)eskt(2)举例: X ( s ) = 100 s ( s 2 + 10 s + 100 ) = A ( s ) s B ( s ) X(s) = \frac{100}{s \left( s^2 + 10s + 100 \right)} = \frac{A(s)}{s B(s)} X(s)=s(s2+10s+100)100=sB(s)A(s)极点为 s 1 , 2 = − 5 ± 5 3 j s_{1,2} = -5 \pm 5 \sqrt{3} j s1,2=5±53 j
由于 B ′ ( s ) = 2 s + 10 B'(s) = 2s+10 B(s)=2s+10,故 B ′ ( s 1 ) = 10 3 j , B ′ ( s 2 ) = − 10 3 j B' \left( s_1 \right) = 10 \sqrt{3}j, B' \left( s_2 \right) = -10 \sqrt{3}j B(s1)=103 j,B(s2)=103 j。代入(2)有
x ( t ) = A ( 0 ) B ( 0 ) + ∑ k = 1 n A ( s k ) s k B ′ ( s k ) e s k t = 100 100 + A ( s 1 ) s 1 B ′ ( s 1 ) e s 1 t + A ( s 2 ) s 2 B ′ ( s 2 ) e s 2 t = 1 + 100 ( − 5 + 5 3 j ) ⋅ 10 3 j e ( − 5 + 5 3 j ) t + 100 ( − 5 − 5 3 j ) ⋅ ( − 10 3 j ) e ( − 5 − 5 3 j ) t = 1 − 2 3 j + 3 e ( − 5 + 5 3 j ) t + 2 3 j − 3 e ( − 5 − 5 3 j ) t = 1 − 2 3 j + 3 e − 5 t ( cos ⁡ 5 3 t + j sin ⁡ 5 3 t ) + 2 3 j − 3 e − 5 t ( cos ⁡ 5 3 t − j sin ⁡ 5 3 t ) = 1 + e − 5 t cos ⁡ 5 3 t − 1 3 e − 5 t sin ⁡ 5 3 t \begin{aligned} x(t) &= \frac{A(0)}{B(0)} + \sum _{k=1}^n \frac{A \left( s_k \right)}{s_k B' \left( s_k \right)} e^{s_k t} \\ &= \frac{100}{100} + \frac{A \left( s_1 \right)}{s_1 B' \left( s_1 \right)} e^{s_1 t} + \frac{A \left( s_2 \right)}{s_2 B' \left( s_2 \right)} e^{s_2 t} \\ &= 1 + \frac{100}{\left( -5 + 5 \sqrt{3} j \right) \cdot 10 \sqrt{3} j} e^{ \left( -5 + 5 \sqrt{3} j \right) t} + \frac{100}{\left( -5 - 5 \sqrt{3} j \right) \cdot \left( -10 \sqrt{3} j \right)} e^{ \left( -5 - 5 \sqrt{3} j \right) t} \\ &= 1 - \frac{2}{\sqrt{3} j + 3} e^{\left( -5 + 5 \sqrt{3} j \right) t} + \frac{2}{\sqrt{3} j - 3} e^{\left( -5 - 5 \sqrt{3} j \right) t} \\ &= 1 - \frac{2}{\sqrt{3} j + 3} e^{-5t} \left( \cos 5\sqrt{3}t + j \sin 5 \sqrt{3}t \right) + \frac{2}{\sqrt{3} j - 3} e^{-5t} \left( \cos 5\sqrt{3}t - j \sin 5 \sqrt{3}t \right) \\ &= 1 + e^{-5t} \cos 5\sqrt{3}t - \frac{1}{3} e^{-5t} \sin 5 \sqrt{3}t \end{aligned} x(t)=B(0)A(0)+k=1nskB(sk)A(sk)eskt=100100+s1B(s1)A(s1)es1t+s2B(s2)A(s2)es2t=1+(5+53 j)103 j100e(5+53 j)t+(553 j)(103 j)100e(553 j)t=13 j+32e(5+53 j)t+3 j32e(553 j)t=13 j+32e5t(cos53 t+jsin53 t)+3 j32e5t(cos53 tjsin53 t)=1+e5tcos53 t31e5tsin53 t

3) 有重根的情况

此时 X ( s ) X(s) X(s)分母为
B ( s ) = ( s − s 1 ) μ 1 ( s − s 2 ) μ 2 ⋯ ( s − s r ) μ r B(s) = \left(s - s_1 \right) ^{\mu_1} \left(s - s_2 \right) ^{\mu_2} \cdots \left(s - s_r \right) ^{\mu_r} B(s)=(ss1)μ1(ss2)μ2(ssr)μr即:极点 s i s_i si的重数为 μ i \mu_i μi。共 r r r个根 s 1 , s 2 , ⋯   , s r s_1, s_2, \cdots, s_r s1,s2,,sr,且阶数 μ 1 + μ 2 + ⋯ + μ r = n \mu_1 + \mu_2 + \cdots + \mu_r = n μ1+μ2++μr=n
则时域为
x ( t ) = ∑ k = 1 r ∑ j = 1 μ k A j k t μ k − j ( μ k − j ) ! e s k t (3) x(t) = \sum _{k=1}^r \sum _{j=1}^{\mu_k} A_{jk} \frac{t^{\mu_k - j}}{\left( \mu_k - j \right)!} e^{s_k t} \tag{3} x(t)=k=1rj=1μkAjk(μkj)!tμkjeskt(3)其中系数 A j k A_{jk} Ajk满足
A j k = 1 ( j − 1 ) ! d j − 1 d s j − 1 [ ( s − s k ) μ k X ( s ) ] s = s k (4) A_{jk} = \frac{1}{\left( j - 1 \right) !} \frac{d^{j-1}}{ds^{j-1}} \Big[ \left( s -s_k \right) ^{\mu_k} X(s) \Big] _{s = s_k} \tag{4} Ajk=(j1)!1dsj1dj1[(ssk)μkX(s)]s=sk(4)例:
X ( s ) = s 2 ( s − 1 ) 3 ( s + 1 ) 3 X(s) = \frac{s^2}{(s-1)^3 (s+1)^3} X(s)=(s1)3(s+1)3s2极点 s 1 = 1 , s 2 = − 1 s_1 = 1, s_2 = -1 s1=1,s2=1,其重数分别为 μ 1 = 3 , μ 2 = 3 \mu_1 = 3, \mu_2 = 3 μ1=3,μ2=3。代入(3):
x ( t ) = ∑ k = 1 r ∑ j = 1 μ k A j k t μ k − j ( μ k − j ) ! e s k t = A 11 t μ 1 − 1 ( μ 1 − 1 ) ! e s 1 t + A 21 t μ 1 − 2 ( μ 1 − 2 ) ! e s 1 t + A 31 t μ 1 − 3 ( μ 1 − 3 ) ! e s 1 t + A 12 t μ 2 − 1 ( μ 2 − 1 ) ! e s 2 t + A 22 t μ 2 − 2 ( μ 2 − 2 ) ! e s 2 t + A 32 t μ 2 − 3 ( μ 2 − 3 ) ! e s 2 t = 1 2 A 11 t 2 e t + A 21 t e t + A 31 e t + 1 2 A 12 t 2 e − t + A 22 t e − t + A 32 e − t x(t) = \sum _{k=1}^r \sum _{j=1}^{\mu_k} A_{jk} \frac{t^{\mu_k - j}}{\left( \mu_k - j \right)!} e^{s_k t} \\ = A_{11} \frac{t^{\mu_1 - 1}}{\left(\mu_1 - 1 \right) !} e^{s_1 t} + A_{21} \frac{t^{\mu_1 - 2}}{\left(\mu_1 - 2 \right) !} e^{s_1 t} + A_{31} \frac{t^{\mu_1 - 3}}{\left(\mu_1 - 3 \right) !} e^{s_1 t} + A_{12} \frac{t^{\mu_2 - 1}}{\left(\mu_2 - 1 \right) !} e^{s_2 t} + A_{22} \frac{t^{\mu_2 - 2}}{\left(\mu_2 - 2 \right) !} e^{s_2 t} + A_{32} \frac{t^{\mu_2 - 3}}{\left(\mu_2 - 3 \right) !} e^{s_2 t} \\ = \frac{1}{2} A_{11} t^2 e^t + A_{21} t e^t + A_{31} e^t + \frac{1}{2} A_{12} t^2 e^{-t} + A_{22} t e^{-t} + A_{32} e^{-t} x(t)=k=1rj=1μkAjk(μkj)!tμkjeskt=A11(μ11)!tμ11es1t+A21(μ12)!tμ12es1t+A31(μ13)!tμ13es1t+A12(μ21)!tμ21es2t+A22(μ22)!tμ22es2t+A32(μ23)!tμ23es2t=21A11t2et+A21tet+A31et+21A12t2et+A22tet+A32et下面来算 A j k A_{jk} Ajk
A 11 = 1 ( 1 − 1 ) ! d 1 − 1 d s 1 − 1 [ ( s − s 1 ) μ 1 X ( s ) ] s = s 1 = s 2 ( s + 1 ) 3 ∣ s = 1 = 1 8 A 21 = 1 ( 2 − 1 ) ! d 2 − 1 d s 2 − 1 [ ( s − s 1 ) μ 1 X ( s ) ] s = s 1 = d d s [ s 2 ( s + 1 ) 3 ] s = 1 = 2 s − s 2 ( s + 1 ) 4 ∣ s = 1 = 1 16 A 31 = 1 ( 3 − 1 ) ! d 3 − 1 d s 3 − 1 [ ( s − s 1 ) μ 1 X ( s ) ] s = s 1 = d 2 d s 2 [ s 2 ( s + 1 ) 3 ] s = 1 = s 2 − 4 s + 1 ( s + 1 ) 5 ∣ s = 1 = − 1 16 A 12 = 1 ( 1 − 1 ) ! d 1 − 1 d s 1 − 1 [ ( s − s 2 ) μ 2 X ( s ) ] s = s 2 = s 2 ( s − 1 ) 3 ∣ s = − 1 = − 1 8 A 22 = 1 ( 2 − 1 ) ! d 2 − 1 d s 2 − 1 [ ( s − s 2 ) μ 2 X ( s ) ] s = s 2 = d d s [ s 2 ( s − 1 ) 3 ] s = − 1 = − s 2 − 2 s ( s − 1 ) 4 ∣ s = − 1 = 1 16 A 32 = 1 ( 3 − 1 ) ! d 3 − 1 d s 3 − 1 [ ( s − s 2 ) μ 2 X ( s ) ] s = s 2 = d 2 d s 2 [ s 2 ( s − 1 ) 3 ] s = − 1 = s 2 + 4 s + 1 ( s − 1 ) 5 ∣ s = − 1 = 1 16 A_{11} = \frac{1}{\left( 1 - 1 \right) !} \frac{d^{1-1}}{ds^{1-1}} \Big[ \left( s -s_1 \right) ^{\mu_1} X(s) \Big] _{s = s_1} = \frac{s^2}{(s+1)^3} \Big\rvert _{s = 1} = \frac{1}{8} \\ A_{21} = \frac{1}{\left( 2 - 1 \right) !} \frac{d^{2-1}}{ds^{2-1}} \Big[ \left( s -s_1 \right) ^{\mu_1} X(s) \Big] _{s = s_1} = \frac{d}{ds} \left[ \frac{s^2}{(s+1)^3} \right] _{s=1}= \frac{2s-s^2}{(s+1)^4} \Bigg\rvert _{s = 1} = \frac{1}{16} \\ A_{31} = \frac{1}{\left( 3 - 1 \right) !} \frac{d^{3-1}}{ds^{3-1}} \Big[ \left( s -s_1 \right) ^{\mu_1} X(s) \Big] _{s = s_1} = \frac{d^2}{ds^2} \left[ \frac{s^2}{(s+1)^3} \right] _{s=1}= \frac{s^2-4s+1}{(s+1)^5} \Bigg\rvert _{s = 1} = - \frac{1}{16} \\ A_{12} = \frac{1}{\left( 1 - 1 \right) !} \frac{d^{1-1}}{ds^{1-1}} \Big[ \left( s -s_2 \right) ^{\mu_2} X(s) \Big] _{s = s_2} = \frac{s^2}{(s-1)^3} \Bigg\rvert _{s = -1} = - \frac{1}{8} \\ A_{22} = \frac{1}{\left( 2 - 1 \right) !} \frac{d^{2-1}}{ds^{2-1}} \Big[ \left( s -s_2 \right) ^{\mu_2} X(s) \Big] _{s = s_2} = \frac{d}{ds} \left[ \frac{s^2}{(s-1)^3} \right] _{s=-1} = \frac{-s^2-2s}{(s-1)^4} \Bigg\rvert _{s = -1} = \frac{1}{16} \\ A_{32} = \frac{1}{\left( 3 - 1 \right) !} \frac{d^{3-1}}{ds^{3-1}} \Big[ \left( s -s_2 \right) ^{\mu_2} X(s) \Big] _{s = s_2} = \frac{d^2}{ds^2} \left[ \frac{s^2}{(s-1)^3} \right] _{s=-1} = \frac{s^2+4s+1}{(s-1)^5} \Bigg\rvert _{s = -1} = \frac{1}{16} A11=(11)!1ds11d11[(ss1)μ1X(s)]s=s1=(s+1)3s2 s=1=81A21=(21)!1ds21d21[(ss1)μ1X(s)]s=s1=dsd[(s+1)3s2]s=1=(s+1)42ss2 s=1=161A31=(31)!1ds31d31[(ss1)μ1X(s)]s=s1=ds2d2[(s+1)3s2]s=1=(s+1)5s24s+1 s=1=161A12=(11)!1ds11d11[(ss2)μ2X(s)]s=s2=(s1)3s2 s=1=81A22=(21)!1ds21d21[(ss2)μ2X(s)]s=s2=dsd[(s1)3s2]s=1=(s1)4s22s s=1=161A32=(31)!1ds31d31[(ss2)μ2X(s)]s=s2=ds2d2[(s1)3s2]s=1=(s1)5s2+4s+1 s=1=161故时域为
x ( t ) = 1 2 A 11 t 2 e t + A 21 t e t + A 31 e t + 1 2 A 12 t 2 e − t + A 22 t e − t + A 32 e − t = 1 16 t 2 e t + 1 16 t e t − 1 16 e t − 1 16 t 2 e − t + 1 16 t e − t + 1 16 e − t \begin{aligned} x(t) &= \frac{1}{2} A_{11} t^2 e^t + A_{21} t e^t + A_{31} e^t + \frac{1}{2} A_{12} t^2 e^{-t} + A_{22} t e^{-t} + A_{32} e^{-t} \\ &= \frac{1}{16} t^2 e^t + \frac{1}{16} t e^t - \frac{1}{16} e^t - \frac{1}{16} t^2 e^{-t} + \frac{1}{16} t e^{-t} + \frac{1}{16} e^{-t} \end{aligned} x(t)=21A11t2et+A21tet+A31et+21A12t2et+A22tet+A32et=161t2et+161tet161et161t2et+161tet+161et

3. 备注

实际上,简便方法中的方法一和方法二,都可以用方法三,即式(3)来解决,前两者只不过是方法三的特殊形式。而方法三本质也是基于留数定理得到的。所以,为了简化记忆,可以只记忆方法三。

猜你喜欢

转载自blog.csdn.net/weixin_58399148/article/details/128571913