Godot实现屏幕烟雾Shader

前言

很多游戏都有一些高逼格的屏幕特效,一些3D引擎是通过场景渲染到UI上,甚至直接是一个场景。但也有其他的方法可以实现,比如纯Shader。

我借鉴了https://www.shadertoy.com/view/XtfSW4

方法和之前的文章类似就不赘述了,感兴趣的同学可以看看。

代码分享

shader_type canvas_item;

uniform vec3      iResolution;           // 视口分辨率(像素)
uniform float     iTime;                 // 着色器回放时间(单位:秒)

const float cloudDensity = 1.0; 	// overall density [0,1]
const float noisiness = 0.35; 	// overall strength of the noise effect [0,1]
const float speed = 0.1;			// controls the animation speed [0, 0.1 ish)
const float cloudHeight = 2.5; 	// (inverse) height of the input gradient [0,...)


// Simplex noise below = ctrl+c, ctrl+v:
// Description : Array and textureless GLSL 2D/3D/4D simplex 
//               noise functions.
//      Author : Ian McEwan, Ashima Arts.
//  Maintainer : ijm
//     Lastmod : 20110822 (ijm)
//     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
//               Distributed under the MIT License. See LICENSE file.
//               https://github.com/ashima/webgl-noise
// 

vec3 mod289(vec3 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 mod289_(vec4 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 permute(vec4 x) {
     return mod289_(((x*34.0)+1.0)*x);
}

vec4 taylorInvSqrt(vec4 r)
{
  return 1.79284291400159 - 0.85373472095314 * r;
}

float snoise(vec3 v)
  { 
  const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
  const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

// First corner
  vec3 i  = floor(v + dot(v, C.yyy) );
  vec3 x0 =   v - i + dot(i, C.xxx) ;

// Other corners
  vec3 g = step(x0.yzx, x0.xyz);
  vec3 l = 1.0 - g;
  vec3 i1 = min( g.xyz, l.zxy );
  vec3 i2 = max( g.xyz, l.zxy );

  //   x0 = x0 - 0.0 + 0.0 * C.xxx;
  //   x1 = x0 - i1  + 1.0 * C.xxx;
  //   x2 = x0 - i2  + 2.0 * C.xxx;
  //   x3 = x0 - 1.0 + 3.0 * C.xxx;
  vec3 x1 = x0 - i1 + C.xxx;
  vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
  vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y

// Permutations
  i = mod289(i); 
  vec4 p = permute( permute( permute( 
             i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
           + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) 
           + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
  float n_ = 0.142857142857; // 1.0/7.0
  vec3  ns = n_ * D.wyz - D.xzx;

  vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)

  vec4 x_ = floor(j * ns.z);
  vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

  vec4 x = x_ *ns.x + ns.yyyy;
  vec4 y = y_ *ns.x + ns.yyyy;
  vec4 h = 1.0 - abs(x) - abs(y);

  vec4 b0 = vec4( x.xy, y.xy );
  vec4 b1 = vec4( x.zw, y.zw );

  //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
  //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
  vec4 s0 = floor(b0)*2.0 + 1.0;
  vec4 s1 = floor(b1)*2.0 + 1.0;
  vec4 sh = -step(h, vec4(0.0));

  vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
  vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

  vec3 p0 = vec3(a0.xy,h.x);
  vec3 p1 = vec3(a0.zw,h.y);
  vec3 p2 = vec3(a1.xy,h.z);
  vec3 p3 = vec3(a1.zw,h.w);

//Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;

// Mix final noise value
  vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
  m = m * m;
  return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), 
                                dot(p2,x2), dot(p3,x3) ) );
}

/// Cloud stuff:
const float maximum = 1.0/1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 + 1.0/5.0 + 1.0/6.0 + 1.0/7.0 + 1.0/8.0;
// Fractal Brownian motion, or something that passes for it anyway: range [-1, 1]
float fBm(vec3 uv)
{
    float sum = 0.0;
    for (int i = 0; i < 8; ++i) {
        float f = float(i+1);
        sum += snoise(uv*f) / f;
    }
    return sum / maximum;
}

// Simple vertical gradient:
float gradient(vec2 uv) {
 	return (1.0 - uv.y * uv.y * cloudHeight);   
}

vec4 mainImage(in vec4 fragCoord )
{
	vec2 uv = fragCoord.xy / iResolution.xy;
    vec3 p = vec3(uv, iTime*speed);
    vec3 someRandomOffset = vec3(0.1, 0.3, 0.2);
    vec2 duv = vec2(fBm(p), fBm(p + someRandomOffset)) * noisiness;
    float q = gradient(uv + duv) * cloudDensity;
	q = clamp(q,0.0, 1.0);
	return vec4(q,q,q, q);
}

void fragment(){
	vec4 output = mainImage(FRAGCOORD);
    COLOR = output;
}

总结

我改动了几处,godot引擎中没有mainImage函数,所以需要把改函数放进fragment函数中。

并且对mainImage函数的定义进行了修改,比如void变成vec4。

增加了两个变量,用于程序修改

uniform vec3      iResolution;           // 视口分辨率(像素)
uniform float     iTime;                 // 着色器回放时间(单位:秒)

对一些变量写上了const

const float cloudDensity = 1.0; 	// overall density [0,1]
const float noisiness = 0.35; 	// overall strength of the noise effect [0,1]
const float speed = 0.1;			// controls the animation speed [0, 0.1 ish)
const float cloudHeight = 2.5; 	// (inverse) height of the input gradient [0,...)

以及修改重名函数mod289_

vec4 mod289_(vec4 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 permute(vec4 x) {
     return mod289_(((x*34.0)+1.0)*x);
}

最后放出效果

猜你喜欢

转载自blog.csdn.net/u012863565/article/details/128729612