20230208 对偶四元数的乘法


前言

对偶四元数也称为螺旋算子,能够有效描述位置和姿态的耦合关系。


一、对偶四元数是什么?

对偶四元数是同时描述位置和姿态的一种工具,本文对其乘法进行讲解。

二、对偶四元数乘法

给定两个对偶四元数,其乘法按照四元数乘法进行处理。

a = [ a i ] ∈ R 4 \boldsymbol{a}=[a_i]\in\mathbb{R}^4 a=[ai]R4 b = [ b i ] ∈ R 4 \boldsymbol{b}=[b_i]\in\mathbb{R}^4 b=[bi]R4 c = [ c i ] ∈ R 4 \boldsymbol{c}=[c_i]\in\mathbb{R}^4 c=[ci]R4 d = [ d i ] ∈ R 4 \boldsymbol{d}=[d_i]\in\mathbb{R}^4 d=[di]R4为四个四元数,其中 a 1 a_1 a1 b 1 b_1 b1 c 1 c_1 c1 d 1 d_1 d1为相应的四个标量, ε \varepsilon ε 为对偶四元数的单位。

[ a 1 + ε b 1 a 2 + ε b 2 a 3 + ε b 3 a 4 + ε b 4 ] ∘ [ c 1 + ε d 1 c 2 + ε d 2 c 3 + ε d 3 c 4 + ε d 4 ] \left[\begin{array}{c} a_1+\varepsilon b_1\\ a_2+\varepsilon b_2\\ a_3+\varepsilon b_3\\ a_4+\varepsilon b_4 \end{array}\right] \circ \left[\begin{array}{c} c_1+\varepsilon d_1\\ c_2+\varepsilon d_2\\ c_3+\varepsilon d_3\\ c_4+\varepsilon d_4 \end{array}\right] a1+εb1a2+εb2a3+εb3a4+εb4 c1+εd1c2+εd2c3+εd3c4+εd4

参考四元数的乘法,可以对上式进行展开。
[ a 1 + ε b 1 a 2 + ε b 2 a 3 + ε b 3 a 4 + ε b 4 ] ∘ [ c 1 + ε d 1 c 2 + ε d 2 c 3 + ε d 3 c 4 + ε d 4 ] = [ ( a 1 + ε b 1 ) ( c 1 + ε d 1 ) − ( a 2 + ε b 2 ) ( c 2 + ε d 2 ) − ( a 3 + ε b 3 ) ( c 3 + ε d 3 ) − ( a 4 + ε b 4 ) ( c 4 + ε d 4 ) ( c 1 + ε d 1 ) [ a 2 + ε b 2 a 3 + ε b 3 a 4 + ε b 4 ] + ( a 1 + ε b 1 ) [ c 2 + ε d 2 c 3 + ε d 3 c 4 + ε d 4 ] + [ a 2 + ε b 2 a 3 + ε b 3 a 4 + ε b 4 ] × [ c 2 + ε d 2 c 3 + ε d 3 c 4 + ε d 4 ] ] \left[\begin{array}{c} a_1+\varepsilon b_1\\ a_2+\varepsilon b_2\\ a_3+\varepsilon b_3\\ a_4+\varepsilon b_4 \end{array}\right] \circ \left[\begin{array}{c} c_1+\varepsilon d_1\\ c_2+\varepsilon d_2\\ c_3+\varepsilon d_3\\ c_4+\varepsilon d_4 \end{array}\right] =\left[\begin{array}{c} (a_1+\varepsilon b_1)(c_1+\varepsilon d_1)-(a_2+\varepsilon b_2)(c_2+\varepsilon d_2)-(a_3+\varepsilon b_3)(c_3+\varepsilon d_3)-(a_4+\varepsilon b_4)(c_4+\varepsilon d_4)\\ (c_1+\varepsilon d_1)\left[\begin{array}{c} a_2+\varepsilon b_2\\ a_3+\varepsilon b_3\\ a_4+\varepsilon b_4 \end{array}\right] +(a_1+\varepsilon b_1)\left[\begin{array}{c} c_2+\varepsilon d_2\\ c_3+\varepsilon d_3\\ c_4+\varepsilon d_4 \end{array}\right] + \left[\begin{array}{c} a_2+\varepsilon b_2\\ a_3+\varepsilon b_3\\ a_4+\varepsilon b_4 \end{array}\right]^{\times} \left[\begin{array}{c} c_2+\varepsilon d_2\\ c_3+\varepsilon d_3\\ c_4+\varepsilon d_4 \end{array}\right] \end{array}\right] a1+εb1a2+εb2a3+εb3a4+εb4 c1+εd1c2+εd2c3+εd3c4+εd4 = (a1+εb1)(c1+εd1)(a2+εb2)(c2+εd2)(a3+εb3)(c3+εd3)(a4+εb4)(c4+εd4)(c1+εd1) a2+εb2a3+εb3a4+εb4 +(a1+εb1) c2+εd2c3+εd3c4+εd4 + a2+εb2a3+εb3a4+εb4 × c2+εd2c3+εd3c4+εd4
同时,有
[ a 2 + ε b 2 a 3 + ε b 3 a 4 + ε b 4 ] × = [ 0 − ( a 4 + ε b 4 ) a 3 + ε b 3 a 4 + ε b 4 0 − ( a 2 + ε b 2 ) − ( a 3 + ε b 3 ) a 2 + ε b 2 0 ] \left[\begin{array}{c} a_2+\varepsilon b_2\\ a_3+\varepsilon b_3\\ a_4+\varepsilon b_4 \end{array}\right]^\times=\left[\begin{array}{ccc} 0 & -(a_4+\varepsilon b_4) & a_3+\varepsilon b_3 \\ a_4+\varepsilon b_4 & 0 & -(a_2+\varepsilon b_2)\\ -(a_3+\varepsilon b_3) & a_2+\varepsilon b_2 & 0 \end{array}\right] a2+εb2a3+εb3a4+εb4 ×= 0a4+εb4(a3+εb3)(a4+εb4)0a2+εb2a3+εb3(a2+εb2)0

进一步展开,
[ a 1 + ε b 1 a 2 + ε b 2 a 3 + ε b 3 a 4 + ε b 4 ] ∘ [ c 1 + ε d 1 c 2 + ε d 2 c 3 + ε d 3 c 4 + ε d 4 ] = [ a 1 c 1 − a 2 c 2 − a 3 c 3 − a 4 c 4 + ε ( b 1 c 1 + a 1 d 1 − b 2 c 2 − a 2 d 2 − b 3 c 3 − a 3 d 3 − b 4 c 4 − a 4 d 4 ) [ c 1 a 2 + ε ( c 1 b 2 + d 1 a 2 ) c 1 a 3 + ε ( c 1 b 3 + d 1 a 3 ) c 1 a 4 + ε ( c 1 b 4 + d 1 a 4 ) ] + [ a 1 c 2 + ε ( a 1 d 2 + b 1 c 2 ) a 1 c 3 + ε ( a 1 d 3 + b 1 c 3 ) a 1 c 4 + ε ( a 1 d 4 + b 1 c 4 ) ] + [ 0 − ( a 4 + ε b 4 ) a 3 + ε b 3 a 4 + ε b 4 0 − ( a 2 + ε b 2 ) − ( a 3 + ε b 3 ) a 2 + ε b 2 0 ] [ c 2 + ε d 2 c 3 + ε d 3 c 4 + ε d 4 ] ] \left[\begin{array}{c} a_1+\varepsilon b_1\\ a_2+\varepsilon b_2\\ a_3+\varepsilon b_3\\ a_4+\varepsilon b_4 \end{array}\right] \circ \left[\begin{array}{c} c_1+\varepsilon d_1\\ c_2+\varepsilon d_2\\ c_3+\varepsilon d_3\\ c_4+\varepsilon d_4 \end{array}\right] =\left[\begin{array}{c} a_1c_1-a_2c_2-a_3c_3-a_4c_4+\varepsilon(b_1c_1+a_1d_1-b_2c_2-a_2d_2-b_3c_3-a_3d_3-b_4c_4-a_4d_4) \\ \left[\begin{array}{c} c_1a_2+\varepsilon (c_1b_2+d_1a_2)\\ c_1a_3+\varepsilon (c_1b_3+d_1a_3)\\ c_1a_4+\varepsilon (c_1b_4+d_1a_4) \end{array}\right] + \left[\begin{array}{c} a_1c_2+\varepsilon (a_1d_2+b_1c_2)\\ a_1c_3+\varepsilon (a_1d_3+b_1c_3)\\ a_1c_4+\varepsilon (a_1d_4+b_1c_4) \end{array}\right] + \left[\begin{array}{ccc} 0 & -(a_4+\varepsilon b_4) & a_3+\varepsilon b_3 \\ a_4+\varepsilon b_4 & 0 & -(a_2+\varepsilon b_2)\\ -(a_3+\varepsilon b_3) & a_2+\varepsilon b_2 & 0 \end{array}\right] \left[\begin{array}{c} c_2+\varepsilon d_2\\ c_3+\varepsilon d_3\\ c_4+\varepsilon d_4 \end{array}\right] \end{array}\right] a1+εb1a2+εb2a3+εb3a4+εb4 c1+εd1c2+εd2c3+εd3c4+εd4 = a1c1a2c2a3c3a4c4+ε(b1c1+a1d1b2c2a2d2b3c3a3d3b4c4a4d4) c1a2+ε(c1b2+d1a2)c1a3+ε(c1b3+d1a3)c1a4+ε(c1b4+d1a4) + a1c2+ε(a1d2+b1c2)a1c3+ε(a1d3+b1c3)a1c4+ε(a1d4+b1c4) + 0a4+εb4(a3+εb3)(a4+εb4)0a2+εb2a3+εb3(a2+εb2)0 c2+εd2c3+εd3c4+εd4

再进行整理,可以得到
[ a 1 + ε b 1 a 2 + ε b 2 a 3 + ε b 3 a 4 + ε b 4 ] ∘ [ c 1 + ε d 1 c 2 + ε d 2 c 3 + ε d 3 c 4 + ε d 4 ] = [ a 1 c 1 − a 2 c 2 − a 3 c 3 − a 4 c 4 + ε ( b 1 c 1 + a 1 d 1 − b 2 c 2 − a 2 d 2 − b 3 c 3 − a 3 d 3 − b 4 c 4 − a 4 d 4 ) [ c 1 a 2 + a 1 c 2 + ε ( c 1 b 2 + d 1 a 2 + a 1 d 2 + b 1 c 2 ) c 1 a 3 + a 1 c 3 + ε ( c 1 b 3 + d 1 a 3 + a 1 d 3 + b 1 c 3 ) c 1 a 4 + a 1 c 4 + ε ( c 1 b 4 + d 1 a 4 + a 1 d 4 + b 1 c 4 ) ] + [ − ( a 4 + ε b 4 ) ( c 3 + ε d 3 ) + ( a 3 + ε b 3 ) ( c 4 + ε d 4 ) ( a 4 + ε b 4 ) ( c 2 + ε d 2 ) − ( a 2 + ε b 2 ) ( c 4 + ε d 4 ) − ( a 3 + ε b 3 ) ( c 2 + ε d 2 ) + ( a 2 + ε b 2 ) ( c 3 + ε d 3 ) ] ] \left[\begin{array}{c} a_1+\varepsilon b_1\\ a_2+\varepsilon b_2\\ a_3+\varepsilon b_3\\ a_4+\varepsilon b_4 \end{array}\right] \circ \left[\begin{array}{c} c_1+\varepsilon d_1\\ c_2+\varepsilon d_2\\ c_3+\varepsilon d_3\\ c_4+\varepsilon d_4 \end{array}\right] =\left[\begin{array}{c} a_1c_1-a_2c_2-a_3c_3-a_4c_4+\varepsilon(b_1c_1+a_1d_1-b_2c_2-a_2d_2-b_3c_3-a_3d_3-b_4c_4-a_4d_4) \\ \left[\begin{array}{c} c_1a_2+a_1c_2+\varepsilon (c_1b_2+d_1a_2+a_1d_2+b_1c_2)\\ c_1a_3+a_1c_3+\varepsilon (c_1b_3+d_1a_3+a_1d_3+b_1c_3)\\ c_1a_4+a_1c_4+\varepsilon (c_1b_4+d_1a_4+a_1d_4+b_1c_4) \end{array}\right] + \left[\begin{array}{c} -(a_4+\varepsilon b_4)(c_3+\varepsilon d_3)+(a_3+\varepsilon b_3)(c_4+\varepsilon d_4)\\ (a_4+\varepsilon b_4)(c_2+\varepsilon d_2)-(a_2+\varepsilon b_2)(c_4+\varepsilon d_4)\\ -(a_3+\varepsilon b_3)(c_2+\varepsilon d_2)+(a_2+\varepsilon b_2)(c_3+\varepsilon d_3) \end{array}\right] \end{array}\right] a1+εb1a2+εb2a3+εb3a4+εb4 c1+εd1c2+εd2c3+εd3c4+εd4 = a1c1a2c2a3c3a4c4+ε(b1c1+a1d1b2c2a2d2b3c3a3d3b4c4a4d4) c1a2+a1c2+ε(c1b2+d1a2+a1d2+b1c2)c1a3+a1c3+ε(c1b3+d1a3+a1d3+b1c3)c1a4+a1c4+ε(c1b4+d1a4+a1d4+b1c4) + (a4+εb4)(c3+εd3)+(a3+εb3)(c4+εd4)(a4+εb4)(c2+εd2)(a2+εb2)(c4+εd4)(a3+εb3)(c2+εd2)+(a2+εb2)(c3+εd3)


总结

对偶四元数的乘法与四元数的乘法形式一致。

猜你喜欢

转载自blog.csdn.net/weixin_44382195/article/details/128942427