05、Flutter开发Dart的异步(二)

三. Dart的异步补充

3.1. 任务执行顺序

3.1.1. 认识微任务队列

在前面学习学习中,我们知道Dart中有一个事件循环(Event Loop)来执行我们的代码,里面存在一个事件队列(Event Queue),事件循环不断从事件队列中取出事件执行。
但是如果我们严格来划分的话,在Dart中还存在另一个队列:微任务队列(Microtask Queue)。

  • 微任务队列的优先级要高于事件队列;
  • 也就是说事件循环都是优先执行微任务队列中的任务,再执行 事件队列 中的任务;
    那么在Flutter开发中,哪些是放在事件队列,哪些是放在微任务队列呢?
  • 所有的外部事件任务都在事件队列中,如IO、计时器、点击、以及绘制事件等;
  • 而微任务通常来源于Dart内部,并且微任务非常少。这是因为如果微任务非常多,就会造成事件队列排不上队,会阻塞任务队列的执行(比如用户点击没有反应的情况);

说到这里,你可能已经有点凌乱了,在Dart的单线程中,代码到底是怎样执行的呢?

  • 1、Dart的入口是main函数,所以main函数中的代码会优先执行;
  • 2、main函数执行完后,会启动一个事件循环(Event Loop)就会启动,启动后开始执行队列中的任务;
  • 3、首先,会按照先进先出的顺序,执行 微任务队列(Microtask Queue)中的所有任务;
  • 4、其次,会按照先进先出的顺序,执行 事件队列(Event Queue)中的所有任务;

在这里插入图片描述

3.1.2. 如何创建微任务

在开发中,我们可以通过dart中async下的scheduleMicrotask来创建一个微任务:

import "dart:async";

main(List<String> args) {
    
    
  scheduleMicrotask(() {
    
    
    print("Hello Microtask");
  });
}

在开发中,如果我们有一个任务不希望它放在Event Queue中依次排队,那么就可以创建一个微任务了。

Future的代码是加入到事件队列还是微任务队列呢?

Future中通常有两个函数执行体:

  • Future构造函数传入的函数体
  • then的函数体(catchError等同看待)

那么它们是加入到什么队列中的呢?

  • Future构造函数传入的函数体放在事件队列中
  • then的函数体要分成三种情况:
    情况一:Future没有执行完成(有任务需要执行),那么then会直接被添加到Future的函数执行体后;
    情况二:如果Future执行完后就then,该then的函数体被放到如微任务队列,当前Future执行完后执行微任务队列;
    情况三:如果Future是链式调用,意味着then未执行完,下一个then不会执行;
// future_1加入到eventqueue中,紧随其后then_1被加入到eventqueue中
Future(() => print("future_1")).then((_) => print("then_1"));

// Future没有函数执行体,then_2被加入到microtaskqueue中
Future(() => null).then((_) => print("then_2"));

// future_3、then_3_a、then_3_b依次加入到eventqueue中
Future(() => print("future_3")).then((_) => print("then_3_a")).then((_) => print("then_3_b"));

3.1.3. 代码执行顺序

我们根据前面的规则来学习一个终极的代码执行顺序案例:

import "dart:async";

main(List<String> args) {
    
    
  print("main start");

  Future(() => print("task1"));
	
  final future = Future(() => null);

  Future(() => print("task2")).then((_) {
    
    
    print("task3");
    scheduleMicrotask(() => print('task4'));
  }).then((_) => print("task5"));

  future.then((_) => print("task6"));
  scheduleMicrotask(() => print('task7'));

  Future(() => print('task8'))
    .then((_) => Future(() => print('task9')))
    .then((_) => print('task10'));

  print("main end");
}

代码执行的结果是:


main start
main end
task7
task1
task6
task2
task3
task5
task4
task8
task9
task10

代码分析:

扫描二维码关注公众号,回复: 14885951 查看本文章
  • 1、main函数先执行,所以main start和main end先执行,没有任何问题;
  • 2、main函数执行过程中,会将一些任务分别加入到EventQueue和MicrotaskQueue中;
  • 3、task7通过scheduleMicrotask函数调用,所以它被最早加入到MicrotaskQueue,会被先执行;
  • 4、然后开始执行EventQueue,task1被添加到EventQueue中被执行;
  • 5、通过final future = Future(() => null);创建的future的then被添加到微任务中,微任务直接被优先执行,所以会执行task6;
  • 6、一次在EventQueue中添加task2、task3、task5被执行;
  • 7、task3的打印执行完后,调用scheduleMicrotask,那么在执行完这次的EventQueue后会执行,所以在task5后执行task4(注意:scheduleMicrotask的调用是作为task3的一部分代码,所以task4是要在task5之后执行的)
  • 8、task8、task9、task10一次添加到EventQueue被执行;
    事实上,上面的代码执行顺序有可能出现在面试中,我们开发中通常不会出现这种复杂的嵌套,并且需要完全搞清楚它的执行顺序;
    但是,了解上面的代码执行顺序,会让你对EventQueue和microtaskQueue有更加深刻的理解。

3.2. 多核CPU的利用

3.2.1. Isolate的理解

在Dart中,有一个Isolate的概念,它是什么呢?

  • 我们已经知道Dart是单线程的,这个线程有自己可以访问的内存空间以及需要运行的事件循环;
  • 我们可以将这个空间系统称之为是一个Isolate;
  • 比如Flutter中就有一个Root Isolate,负责运行Flutter的代码,比如UI渲染、用户交互等等;

在 Isolate 中,资源隔离做得非常好,每个 Isolate 都有自己的 Event Loop 与 Queue,

  • Isolate 之间不共享任何资源,只能依靠消息机制通信,因此也就没有资源抢占问题。
    但是,如果只有一个Isolate,那么意味着我们只能永远利用一个线程,这对于多核CPU来说,是一种资源的浪费。

如果在开发中,我们有非常多耗时的计算,完全可以自己创建Isolate,在独立的Isolate中完成想要的计算操作。

如何创建Isolate呢?
创建Isolate是比较简单的,我们通过Isolate.spawn就可以创建了:

import "dart:isolate";

main(List<String> args) {
    
    
  Isolate.spawn(foo, "Hello Isolate");
}

void foo(info) {
    
    
  print("新的isolate:$info");
}

3.2.2. Isolate通信机制

但是在真实开发中,我们不会只是简单的开启一个新的Isolate,而不关心它的运行结果:

  • 我们需要新的Isolate进行计算,并且将计算结果告知Main Isolate(也就是默认开启的Isolate);
  • Isolate 通过发送管道(SendPort)实现消息通信机制;
  • 我们可以在启动并发Isolate时将Main Isolate的发送管道作为参数传递给它;
  • 并发在执行完毕时,可以利用这个管道给Main Isolate发送消息;
import "dart:isolate";

main(List<String> args) async {
    
    
  // 1.创建管道
  ReceivePort receivePort= ReceivePort();

  // 2.创建新的Isolate
  Isolate isolate = await Isolate.spawn<SendPort>(foo, receivePort.sendPort);

  // 3.监听管道消息
  receivePort.listen((data) {
    
    
    print('Data:$data');
    // 不再使用时,我们会关闭管道
    receivePort.close();
    // 需要将isolate杀死
    isolate?.kill(priority: Isolate.immediate);
  });
}

void foo(SendPort sendPort) {
    
    
  sendPort.send("Hello World");
}

但是我们上面的通信变成了单向通信,如果需要双向通信呢?

  • 事实上双向通信的代码会比较麻烦;
  • Flutter提供了支持并发计算的compute函数,它内部封装了Isolate的创建和双向通信;
  • 利用它我们可以充分利用多核心CPU,并且使用起来也非常简单;
    注意:下面的代码不是dart的API,而是Flutter的API,所以只有在Flutter项目中才能运行
main(List<String> args) async {
    
    
  int result = await compute(powerNum, 5);
  print(result);
}

int powerNum(int num) {
    
    
  return num * num;
}

猜你喜欢

转载自blog.csdn.net/qq_25218777/article/details/116403564