map和set介绍及其底层模拟实现

致努力前行的人:

                        要努力,但不要着急,繁花锦簇,硕果累累都需要过程!

目录

1.关联式容器

2.键值对

3.树形结构的关联式容器

3.1set的介绍

3.2set的使用

3.3multiset的使用

3.4map的使用

3.5multimap的使用

4.常见的面试题 

5.底层结构

6.AVL树

6.1AVL树的概念

 6.2AVL树节点的定义

6.3AVL树的插入

6.4AVL树的旋转

6.5AVL树的验证

6.6AVL树的性能

7.红黑树

7.1红黑树的概念

​编辑 7.2红黑树的性质

7.3红黑树结点的定义

7.4红黑树的插入操作

7.5红黑树的验证

7.6实例代码:

7.8红黑树和AVL树的比较

8.红黑树模拟实现STL中的map和set

8.1STL中红黑树map和set结构搭建

8.2改造红黑树

8.3map的模拟实现

8.4set的模拟实现

1.关联式容器

在之前,我们已经接触过STL中的部分容器,比如:vector、list、deque等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。那什么是关联式容器?它与序列式容器有什么区别?

关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key, value>结构的键值对,在数据检索时比序列式容器效率更高。

2.键值对

用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量key和value,key代表键值,value表示与key对应的信息。比如:现在要建立一个英汉互译的字典,那该字典中必然有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应该单词,在词典中就可以找到与其对应的中文含义。

3.树形结构的关联式容器

根据应用场景的不同,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。树型结构的关联式容器主要有四种:map、set、multimap、multiset。这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列。下面一依次介绍每一个容器。

3.1set的介绍

1. set是按照一定次序存储元素的容器
2. 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。
3. 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序。
4. set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代。
5. set在底层是用二叉搜索树(红黑树)实现的。

注意:

1. 与set/multiset不同,map/multimap中存储的是真正的键值对<key, value>,set中只放value,但在底层实际存放的是由<value, value>构成的键值对。
2. set中插入元素时,只需要插入value即可,不需要构造键值对。
3. set中的元素不可以重复(因此可以使用set进行去重)。
4. 使用set的迭代器遍历set中的元素,可以得到有序序列
5. set中的元素默认按照小于来比较
6. set中查找某个元素,时间复杂度为:
log n
7. set中的元素不允许修改.
8. set中的底层使用二叉搜索树(红黑树)来实现。

3.2set的使用

1.set的模板参数列表

 T: set中存放元素的类型,实际在底层存储<value, value>的键值对。
Compare:set中元素默认按照小于来比较
Alloc:set中元素空间的管理方式,使用STL提供的空间配置器管理

2.set的构造

set (const Compare& comp = Compare(), const Allocator&
= Allocator() );
构造空的set
set (InputIterator first, InputIterator last, const Compare& comp = Compare(), const Allocator& = Allocator() ); 用[first, last)区间中的元素构造set
set ( const set<Key,Compare,Allocator>& x);  set的拷贝构造

void Test()
{
	set<int>s; //构造空的set
	vector<int>v;
	set<int>s1(v.begin(), v.end());//迭代器区间的元素构造set
	set<int>s2(s);//拷贝构造
}

3. set的迭代器

iterator begin()  返回set中起始位置元素的迭代器
iterator end()  返回set中最后一个元素后面的迭代器
const_iterator cbegin() const 返回set中起始位置元素的const迭代器
const_iterator cend() const 返回set中最后一个元素后面的const迭代器
reverse_iterator rbegin()  返回set第一个元素的反向迭代器,即end
reverse_iterator rend() 返回set最后一个元素下一个位置的反向迭代器,即rbegin
const_reverse_iterator crbegin() const 返回set第一个元素的反向const迭代器,即cend
const_reverse_iterator crend() const 返回set最后一个元素下一个位置的反向const迭代器,即crbegin

使用set的迭代器遍历set中的元素,可以得到有序序列

void Test()
{
	set<int> s;
	s.insert(3);
	s.insert(10);
	s.insert(4);
	s.insert(9);
	s.insert(7);
	set<int>::iterator it = s.begin();
	while (it != s.end())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;
}

4.set的容量

bool empty ( ) const  检测set是否为空,空返回true,否则返回false
size_type size() const  返回set中有效元素的个数

5.set修改操作

pair<iterator,bool> insert (const value_type& x ) 在set中插入元素x,实际插入的是<x, x>构成的
键值对,如果插入成功,返回<该元素在set中的
位置,true>,如果插入失败,说明x在set中已经
存在,返回<x在set中的位置,false>
void erase ( iterator position )  删除set中position位置上的元素
size_type erase ( const key_type& x ) 删除set中值为x的元素,返回删除的元素的个数
void erase ( iterator first,iterator last ) 删除set中[first, last)区间中的元素
void swap (set<Key,Compare,Allocator>&st ); 交换set中的元素
void clear ( )  将set中的元素清空
iterator find ( const key_type& x ) const 返回set中值为x的元素的位置
size_type count ( const key_type& x ) const 返回set中值为x的元素的个数
void Test()
{
	set<int> s;
	//插入
	s.insert(3);
	s.insert(10);
	s.insert(4);
	s.insert(9);
	s.insert(7);
	//返回set中值为x的元素的位置
	set<int>::iterator ret = s.find(3);
	//删除set中position位置上的元素
	s.erase(ret);
	set<int>::iterator it = s.begin();
	while (it != s.end())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;
	cout << s.count(10) << endl; //返回set中值为10的元素的个数
	s.clear(); //将set中的元素清空
}

 

3.3multiset的使用

1. multiset是按照特定顺序存储元素的容器,其中元素是可以重复的。
2. 在multiset中,元素的value也会识别它(因为multiset中本身存储的就是<value, value>组成的键值对,因此value本身就是key,key就是value,类型为T). multiset元素的值不能在容器中进行修改(因为元素总是const的),但可以从容器中插入或删除。
3. 在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则进行排序。
4. multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭代器遍历时会得到一个有序序列。
5. multiset底层结构为二叉搜索树(红黑树)。
 

注意:

1. multiset中再底层中存储的是<value, value>的键值对
2. mtltiset的插入接口中只需要插入即可
3. 与set的区别是,multiset中的元素可以重复,set是中value是唯一的
4. 使用迭代器对multiset中的元素进行遍历,可以得到有序的序列
5. multiset中的元素不能修改
6. 在multiset中找某个元素,时间复杂度为
log n
7. multiset的作用:可以对元素进行排序

与set的区别是,multiset中的元素可以重复,set是中value是唯一的:

void Test()
{
	multiset<int> s;
	s.insert(3);
	s.insert(10);
	s.insert(10);
	s.insert(10);
	s.insert(10);
	s.insert(4);
	s.insert(9);
	s.insert(7);
	set<int>::iterator it = s.begin();
	while (it != s.end())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;
	cout << s.count(10) << endl;
}

 

3.4map的使用

1. map是关联容器,它按照特定的次序(按照key来比较)存储由键值key和值value组合而成的元素。

2. 在map中,键值key通常用于排序和唯一地标识元素,而值value中存储与此键值key关联的内容。键值key和值value的类型可能不同,并且在map的内部,key与value通过成员类型value_type绑定在一起,为其取别名称为pair:
typedef pair<const key, T> value_type;

3. 在内部,map中的元素总是按照键值key进行比较排序的。

4. map中通过键值访问单个元素的速度通常比unordered_map容器慢,但map允许根据顺序对元素进行直接迭代(即对map中的元素进行迭代时,可以得到一个有序的序列)。

5. map支持下标访问符,即在[]中放入key,就可以找到与key对应的value。

6. map通常被实现为二叉搜索树(更准确的说:平衡二叉搜索树(红黑树))。

1.map的模板参数说明

key: 键值对中key的类型
T: 键值对中value的类型
Compare: 比较器的类型,map中的元素是按照key来比较的,缺省情况下按照小于来比较,一般情况下(内置类型元素)该参数不需要传递,如果无法比较时(自定义类型),需要用户自己显式传递比较规则(一般情况下按照函数指针或者仿函数来传递)

Alloc:通过空间配置器来申请底层空间,不需要用户传递,除非用户不想使用标准库提供的空间配置器

2.map的构造

map (const key_compare& comp = key_compare(),
     const allocator_type& alloc = allocator_type());
构造空的map
template <class InputIterator>
  map (InputIterator first, InputIterator last,
       const key_compare& comp = key_compare(),
       const allocator_type& alloc = allocator_type());
用[first, last)区间中的元素构造map
map (const map& x);
拷贝构造

void Test()
{
	map<int, int>m; //构造空的map
	vector<int>v;
	map<int, int>m1(v.begin(), v.end()); //用[first, last)区间中的元素构造map
	map<int, int>m2(m1); //拷贝构造
}

3.map的迭代器

begin()和end() begin:首元素的位置,end最后一个元素的下一个位置
cbegin()和cend() 与begin和end意义相同,但cbegin和cend所指向的元素不能修改
rbegin()和rend() 反向迭代器,rbegin在end位置,rend在begin位置,其++和--操作与begin和end操作移动相反
crbegin()和crend() 与rbegin和rend位置相同,操作相同,但crbegin和crend所指向的元素不能修改

void Test()
{
	map<string, string>dict;
	dict.insert(pair<string, string>("排序", "sort"));
	dict.insert(pair<string, string>("左边", "left"));
	dict.insert(pair<string, string>("右边", "right"));
	//pair<string, string> 等价于 make_pair
	dict.insert(make_pair("字符串", "string"));
	map<string, string>::iterator it = dict.begin();
	while (it != dict.end())
	{
		//cout << (*it).first << ":" << (*it).second << endl;
		cout << it->first << ":" << it->second << endl;
		it++;
	}
	cout << endl;
	for (const auto& e : dict)
	{
		cout << e.first << ":" << e.second << endl;
	}
	cout << endl;
}

  4.map的容量与元素访问

bool empty ( ) const 检测map中的元素是否为空,是返回true,否则返回false
size_type size() const  返回map中有效元素的个数
mapped_type& operator[] (constkey_type& k) 返回去key对应的value

 

void Test()
{
	map<string, string>dict;
	dict.insert(pair<string, string>("排序", "sort"));
	dict.insert(pair<string, string>("左边", "left"));
	dict.insert(pair<string, string>("右边", "right"));
	dict["insert"]; //插入
	dict["insert"] = "插入"; //修改
	dict["iterator"] = "迭代器"; //插入+修改
	cout << dict["左边"] << endl; //key在就是查找
}

5.map中元素的修改

pair<iterator,bool> insert (const value_type& x ) 在map中插入键值对x,注意x是一个键值
对,返回值也是键值对:iterator代表新插入
元素的位置,bool代表插入成功
void erase ( iterator position )  删除position位置上的元素
size_type erase ( const key_type& x ) 删除键值为x的元素
void erase ( iterator first, iterator last ) 删除[first, last)区间中的元素
void swap (map<Key,T,Compare,Allocator>&mp ) 交换两个map中的元素
void clear ( )  将map中的元素清空
iterator find ( const key_type& x) 在map中插入key为x的元素,找到返回该元
素的位置的迭代器,否则返回end
const_iterator find ( const key_type& x ) const 在map中插入key为x的元素,找到返回该元
素的位置的const迭代器,否则返回cend
size_type count ( const key_type& x ) const 返回key为x的键值在map中的个数,注意
map中key是唯一的,因此该函数的返回值
要么为0,要么为1,因此也可以用该函数来
检测一个key是否在map中
void Test()
{
	//统计水果出现的次数
	string arr[] = { "苹果", "西瓜", "香蕉", "草莓", "苹果", "西瓜", 
		"苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };
	map<string, int>countMap;
	for (const auto& e : arr)
	{
		map<string, int>::iterator it = countMap.find(e);
		if (it == countMap.end())
		{
			countMap.insert(make_pair(e, 1));
		}
		else
		{
			it->second++;
		}
	}
	for (const auto& e : countMap)
	{
		cout << e.first << ":" << e.second << endl;
	}
	cout << endl;
}

3.5multimap的使用

1. multimaps是关联式容器,它按照特定的顺序,存储由key和value映射成的键值对<key,value>,其中多个键值对之间的key是可以重复的。
2. 在multimap中,通常按照key排序和惟一地标识元素,而映射的value存储与key关联的内容。key和value的类型可能不同,通过multimap内部的成员类型value_type组合在一起,value_type是组合key和value的键值对:

typedef pair<const Key, T> value_type;
3. 在内部,multimap中的元素总是通过其内部比较对象,按照指定的特定严格弱排序标准对key进行排序的。
4. multimap通过key访问单个元素的速度通常比unordered_multimap容器慢,但是使用迭代器直接遍历multimap中的元素可以得到关于key有序的序列。
5. multimap在底层用二叉搜索树(红黑树)来实现

注意:multimap和map的唯一不同就是:map中的key是唯一的,而multimap中key是可以重复的。

multimap中的接口可以参考map,功能都是类似的。

void Test()
{
	multimap<string, string>dict;
	dict.insert(pair<string, string>("排序", "sort"));
	dict.insert(pair<string, string>("排序", "sort"));

	dict.insert(pair<string, string>("左边", "left"));
	dict.insert(pair<string, string>("左边", "left"));

	dict.insert(pair<string, string>("右边", "right"));
	dict.insert(pair<string, string>("右边", "right"));

	for (const auto& e : dict)
	{
		cout << e.first << ":" << e.second << endl;
	}
	cout << endl;
}

4.常见的面试题 

前K个高频单词

实现思路:定义一个map,然后将统计出现的字符串次数,然后放到一个vector<pair<int,string>>中,按照降序的方式进行排序,需要注意的是sort排序的时候是不稳定的,所以当出现的次数相同的时候,应该按照字典序的方式进行排序,然后将前k的字符串放到vector<string>中返回

class Solution {
public:
	struct Compare
	{
		bool operator()(const pair<int, string>& left, const pair<int, string>& right)
		{
			return left.first > right.first || (left.first == right.first && left.second < right.second);
		}
	};
    vector<string> topKFrequent(vector<string>& words, int k) 
	{
		map<string, int> countMap;
		for (const auto& e : words)
		{
			countMap[e]++;
		}
		vector<pair<int, string>>v;
		for (const auto& e : countMap)
		{
			v.push_back(make_pair(e.second, e.first));
		}
		sort(v.begin(), v.end(),Compare());
		vector<string>str;
		for (size_t i = 0; i < k; i++)
		{
			str.push_back(v[i].second);
		}
		return str;
    }
};

两个数组出现的交集

实现思路:实现set排序加去重的特性,如果两个数据相等就将数据加入到vector<int>中,否则就++数据小的那个迭代器

class Solution {
public:
	vector<int> intersection(vector<int>& nums1, vector<int>& nums2)
	{
		set<int>s1(nums1.begin(), nums1.end());
		set<int>s2(nums2.begin(), nums2.end());
		vector<int>v;
		auto it1 = s1.begin();
		auto it2 = s2.begin();
		while (it1 != s1.end() && it2 != s2.end())
		{
			if (*it1 == *it2)
			{
				v.push_back(*it1);
				it1++;
				it2++;
			}
			else if (*it1 > *it2)
				++it2;
			else
				++it1;
		}
		return v;
	}
};

 

5.底层结构

前面对map/multimap/set/multiset进行了简单的介绍,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此
map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

6.AVL树

6.1AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

        ​
        它的左右子树都是AVL树
        左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
logn,搜索时间复杂度O(log n)
一般规定:平衡因子 = 右子树的高度 - 左子树的高度

 6.2AVL树节点的定义

template<class K,class V>
struct AVLTreeNode
{
	pair<K, V>_kv;
	AVLTreeNode<K, V>* _left; // 该节点的左孩子
	AVLTreeNode<K, V>* _right; //该节点的右孩子
	AVLTreeNode<K, V>* _parent; // 该节点的双亲
	int _bf; //balance fector
	AVLTreeNode(const pair<K, V> kv)
		:_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _bf(0) {}
};

6.3AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子

 

 更新完之后是否继续更新判断标准:

1.parent->_bf == 0,说明之前parent->_bf是1或者是-1,也就是说parent一边高一边低,这次插入填上矮的那边,parent所在子树高度不变,不需要继续往上更新

2、parent->_bf == 1 或 -1 说明之前是parent->_bf == 0,两边一样高,现在插入一边更高了,parent所在子树高度变了,继续往上更新

3、parent->_bf == 2 或 -2,说明之前parent->_bf == 1 或者 -1,现在插入严重不平衡,违反规则,需要做旋转处理

旋转后需要达成的目标:

1.让这颗子树的左右高度不超过1;

2.旋转完之后继续保持是二叉搜索树

3.更新调整孩子结点的平衡因子

4.让这颗子树的高度跟插入前保持一致

6.4AVL树的旋转

AVL树的旋转分为四种:

 

6.5AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1. 验证其为二叉搜索树
        如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2. 验证其为平衡树
        每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
        节点的平衡因子是否计算正确

6.6AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2 N。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数
据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

实例代码:

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		else
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_kv.first < kv.first)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_kv.first > kv.first)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}
			cur = new Node(kv);
			if (parent->_kv.first < kv.first)
			{
				parent->_right = cur;
				cur->_parent = parent;
			}
			else
			{
				parent->_left = cur;
				cur->_parent = parent;
			}
			//调整平衡因子:
			while (parent)
			{
				if (parent->_left == cur)
				{
					parent->_bf--;
				}
				else
				{
					parent->_bf++;
				}
				if (parent->_bf == 0)
				{
					break;
				}
				else if (parent->_bf == 1 || parent->_bf == -1)
				{
					cur = parent;
					parent = parent->_parent;
				}
				else if (parent->_bf == 2 || parent->_bf == -2)
				{
					if (parent->_bf == 2 && cur->_bf == 1)
					{
						RotateL(parent);
					}
					else if (parent->_bf == -2 && cur->_bf == -1)
					{
						RotateR(parent);
					}
					else if (parent->_bf == -2 && cur->_bf == 1)
					{
						RotateLR(parent);
					}
					else if (parent->_bf == 2 && cur->_bf == -1)
					{
						RotateRL(parent);
					}
					else
					{
						assert(false);
					}
					break;
				}
				else
				{
					assert(false);
				}
			}
		}
		return true;
	}
	void Inorder()
	{
		_Inorder(_root);
	}
	bool IsBalance()
	{
		return _IsBalance(_root);
	}
private:
	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
		{
			return true;
		}
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		if (rightHeight - leftHeight != root->_bf)
		{
			return false;
		}
		return abs(rightHeight - leftHeight) < 2 && _IsBalance(root->_left) && _IsBalance(root->_right);
	}
	int Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int lh = Height(root->_left);
		int rh = Height(root->_right);

		return lh > rh ? lh + 1 : rh + 1;
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (ppNode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
		parent->_bf = subR->_bf = 0;
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (ppNode == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
		parent->_bf = subL->_bf = 0;
	}
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
		RotateL(parent->_left);
		RotateR(parent);
		//subLR的左子树新增
		if (bf == -1)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 1;
		}
		//subLR的右子树新增
		else if (bf == 1)
		{
			subL->_bf = -1;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		//subLR自己本身就是新增
		else if(bf == 0)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
		RotateR(parent->_right);
		RotateL(parent);
		//subRL的右子树新增
		if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		//subLR的左子树新增
		else if (bf == -1)
		{
			subRL->_bf = 0;
			subR->_bf = 1;
			parent->_bf = 0;
		}
		//subRL自己本身就是新增
		else if (bf == 0)
		{
			subRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}
private:
	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_Inorder(root->_right);
	}

private:
	Node* _root = nullptr;
};

7.红黑树

7.1红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

如图所示

 7.2红黑树的性质

1.每个结点不是红色就是黑色

2.根节点是黑色的

3.如果一个结点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)

4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 (每条路径上都包含相同数量的黑色结点)

5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)

满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍

7.3红黑树结点的定义

//结点的颜色
enum Color
{
	RED,
	BLACK
};
template<class K,class V>
struct RBTreeNode
{
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	Color _col;
	RBTreeNode(const pair<K, V> kv)
		:_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED) {}
};

7.4红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

1. 按照二叉搜索的树规则插入新节点

2. 检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一: cur为红,p为红,g为黑,u存在且为红

解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

如图所示:

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑 

解决方式:p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红

如图所示

 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

解决方式:p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转则转换成了情况2(双旋转)

如图所示:

7.5红黑树的验证

红黑树的检测分为两步:
1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
2. 检测其是否满足红黑树的性质

7.6实例代码:

//结点的颜色
enum Color
{
	RED,
	BLACK
};
template<class K,class V>
struct RBTreeNode
{
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	Color _col;
	RBTreeNode(const pair<K, V> kv)
		:_kv(kv), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED) {}
};

template<class K,class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (grandfather == nullptr)
				break;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = grandfather->_parent;
				}
				else
				{
					if (cur == parent->_left)
					{
						//情况二:
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//情况三:
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					parent = grandfather->_parent;
					cur = grandfather;
				}
				else
				{
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return true;
	}
	void Inorder()
	{
		_Inorder(_root);
	}
	bool IsBalance()
	{
		if (_root == nullptr)
			return false;
		//判断根节点:
		if (_root->_col != BLACK)
			return false;
		//获取任意路径上黑色节点的数量:
		int ref = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
				ref++;
			left = left->_left;
		}
		return CheckRBTree(_root, 0, ref);
	}
private:
	bool CheckRBTree(Node* root, int blackNum, int ref)
	{
		if (root == nullptr)
		{
			if (blackNum != ref)
			{
				cout << "违反规则:本条路径上黑色结点的数量和最左路径上的不相等" << endl;
				return false;
			}
			return true;
		}
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "违反规则:出现连续的红色结点" << endl;
			return false;
		}
		if (root->_col == BLACK)
		{
			blackNum++;
		}
		return CheckRBTree(root->_left, blackNum, ref) &&
			CheckRBTree(root->_right, blackNum, ref);
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (ppNode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (ppNode == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
	}
	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_Inorder(root->_right);
	}
private:
	Node* _root = nullptr;
};

7.8红黑树和AVL树的比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是Olog2 N,红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

8.红黑树模拟实现STL中的map和set

8.1STL中红黑树map和set结构搭建

8.2改造红黑树

enum Color
{
	RED,
	BLACK
};
template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Color _col;
	RBTreeNode(const T& val)
		:_data(val), _left(nullptr), _right(nullptr), _parent(nullptr), _col(RED) {}
};
template<class T,class Ref,class Ptr>
struct __RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T,Ref,Ptr> Self;
	typedef __RBTreeIterator<T, T&, T*> iterator;

	Node* _node;
	__RBTreeIterator(Node* node)
		:_node(node) {}
	//普通迭代器的时候,是拷贝构造
	//const迭代器的时候,是构造,用普通迭代器构造const迭代器
	__RBTreeIterator(const iterator& s)
		:_node(s._node)
	{}
	Ref operator*()
	{
		return _node->_data;
	}
	Ptr operator->()
	{
		return &_node->_data;
	}
	Self& operator++()
	{
		if (_node->_right)
		{
			Node* min = _node->_right;
			while (min->_left)
			{
				min = min->_left;
			}
			_node = min;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}
			_node = parent;
		}
		return *this;
	}
	Self& operator--()
	{
		if (_node->_left)
		{
			Node* max = _node->_left;
			while (max->_right)
			{
				max = max->_right;
			}
			_node = max;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}
			_node = parent;
		}
		return *this;
	}
	bool operator != (const Self& s) 
	{
		return _node != s._node;
	}
	bool operator==(const Self& s)
	{
		return _node == s._node;
	}
};
template<class K,class T,class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef __RBTreeIterator<T,T&,T*> iterator;
	typedef __RBTreeIterator<T, const T&, const T*> const_iterator;

	iterator begin()
	{
		Node* left = _root;
		while (left->_left)
		{
			left = left->_left;
		}
		return iterator(left);
	}
	iterator end()
	{
		return iterator(nullptr);
	}
	iterator begin() const
	{
		Node* left = _root;
		while (left->_left)
		{
			left = left->_left;
		}
		return iterator(left);
	}
	iterator end() const
	{
		return iterator(nullptr);
	}
	pair<iterator,bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			return make_pair(iterator(_root), true);
		}
		KeyOfT kot;
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(iterator(cur), false);
			}
		}
		cur = new Node(data);
		Node* newNode = cur;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (grandfather == nullptr)
				break;
			if (parent == grandfather->_left)
			{
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					cur = grandfather;
					parent = grandfather->_parent;
				}
				else
				{
					if (cur == parent->_left)
					{
						//情况二:
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//情况三:
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
			else
			{
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;
					parent = grandfather->_parent;
					cur = grandfather;
				}
				else
				{
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}
					break;
				}
			}
		}
		_root->_col = BLACK;
		return make_pair(iterator(newNode), true);
	}
	void Inorder()
	{
		_Inorder(_root);
	}
	bool IsBalance()
	{
		if (_root == nullptr)
			return false;
		//判断根节点:
		if (_root->_col != BLACK)
			return false;
		//获取任意路径上黑色节点的数量:
		int ref = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
				ref++;
			left = left->_left;
		}
		return CheckRBTree(_root, 0, ref);
	}
private:
	bool CheckRBTree(Node* root, int blackNum, int ref)
	{
		if (root == nullptr)
		{
			if (blackNum != ref)
			{
				cout << "违反规则:本条路径上黑色结点的数量和最左路径上的不相等" << endl;
				return false;
			}
			return true;
		}
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "违反规则:出现连续的红色结点" << endl;
			return false;
		}
		if (root->_col == BLACK)
		{
			blackNum++;
		}
		return CheckRBTree(root->_left, blackNum, ref) &&
			CheckRBTree(root->_right, blackNum, ref);
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (ppNode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (ppNode == nullptr)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
	}
	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_Inorder(root->_right);
	}
private:
	Node* _root = nullptr;
};

8.3map的模拟实现

namespace ns
{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<const K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;

		iterator begin()
		{
			return _t.begin();
		}
		iterator end()
		{
			return _t.end();
		}
		const_iterator begin() const
		{
			return _t.begin();
		}
		const_iterator end() const
		{
			return _t.end();
		}
		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _t.Insert(kv);
		}
		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}
	private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};

8.4set的模拟实现

namespace ns
{
	template<class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;
		typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;

		iterator begin()
		{
			return _t.begin();
		}
		iterator end()
		{
			return _t.end();
		}
		pair<iterator,bool> insert(const K& key)
		{
			pair<typename RBTree<K, K, SetKeyOfT>::iterator, bool> ret = _t.Insert(key);
			return pair<iterator, bool>(ret.first, ret.second);
		}
	private:
		RBTree<K, K, SetKeyOfT> _t;
	};

猜你喜欢

转载自blog.csdn.net/qq_65307907/article/details/128950868