【C++内存池如何实现】


这篇文章主要介绍了C++内存池如何实现的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C++内存池如何实现文章都会有所收获,下面我们一起来看看吧。

一、内存池基础知识

1、什么是内存池

1.1 池化技术

池化技术是计算机中的一种设计模式,主要是指:将程序中经常要使用的计算机资源预先申请出来,由程序自己管理,程序在使用时直接从“池”中获取,不仅保证了程序占有的资源数量同时减少资源的申请和释放时间。常见的池化技术有内存池、线程池、连接池等。

1.2 内存池

内存池是一种动态内存分配与管理技术。它的核心思想是:预先申请一段内存空间,使用一种高效的数据结构(哈希、链表)进行管理,当程序需要内存时直接从内存池中分配一块内存给程序,同样当使用完时在归还给内存池。这样做的好处是,减少直接使用new/delete、malloc/free等API申请和释放内存的时间,提高程序运行效率;同时,程序每次直接使用new/delete、malloc/free从内存中申请空间,会导致内存碎片问题,内存池直接申请大块内存就减少了内存碎片。

2、内存池的作用

2.1 效率问题

通常申请内存都是通过new/delete、malloc/free接口直接从内存的堆区申请一块内存,释放也是直接释放到堆中。频繁的申请和释放必然消耗大量时间,降低程序的运行效率。

例如:假设每个链表的节点大小为16字节,当链表需要经常插入节点时,必然就需要频繁的内存申请操纵,每次从堆中申请16个字节都要一定的时间开销,释放内存也需要时间开销。使用内存池,我们可以直接从内存中申请“一批节点”,当程序需要内存时不用直接去堆中申请,直接将预先申请好的内存分配给程序。

2.2 内存碎片

频繁的从内存中申请小块内存会导致内存碎片问题。内存碎片分为内碎片和外碎片两种。

1)外碎片

外碎片也就是我们常说的内存碎片。例如:我们每次从内存中申请一块16字节大小的内存,内存中就会存在很多16个字节大小的块,当该内存释放时就可能造成内存碎片,如下图:

内存中空闲内存大小为88字节,但是我们能申请的最大内存块为21字节。
在这里插入图片描述

C++内存池如何实现

2)内碎片

内碎片是指已经分配出去的内存中存在的未使用的小块内存。内存池技术虽然解决了内存随便但是又造成了内碎片问题,内碎片不可避免但是可以通过程序的优化减少内存内碎片。

例如:实际需要是申请10byte的内存,定长内存池可能会进行内存对齐,一次性分配了16个字节的内存,多余的6字节实际并未使用,这6字节就是内存内碎片。

3、内存池技术的演进

1)最最最最“简单”的内存池

做一个链表,指向空闲的内存。分配就是从链表中取出来一块返回pop,释放就是将内存在push到链表中。需要做好归并,标记和保护,防止内存二次释放问题。

2)定长内存池

实现一个FreeList类,它的本质是一个链表,节点是一块固定大小的内存,采用头插和头删的方式申请释放内存。每个固定内存分配器里面有两个链表:OpenList用于存储未分配的空闲内存对象(FreeList对象),CloseList用于存储已经分配的内存对象。

分配内存就是从IOpenLsit中取出一个对象给程序,释放内存就是将对象push到CloseList里。当内存不够时,OpenList申请一个大块内存在切割成固定的长度大小的小块内存。
在这里插入图片描述

C++内存池如何实现
#### 3)C++STL库中的内存池

定长内存池存在的问题就是只能申请固定长度的内存,而实际中我们需要申请的内存大小可能是不管固定,在C++STL库中,采用哈希表和定长内存池结合的方式实现了一个内存池。具体如下

构造多个定长内存池,以一个固定的对齐数进行对齐(例如以8字节进行对齐),第一个定长内存池的内存对象大小为8(至少得能保证无论在64位还是32位系统下都可以保存下一个指针类型),第二个内存池对象大小为16…最后一个内存池对象大小为128byte,当申请的内存大小超过128字节时,通过二级空间配置器申请(直接从内存中申请)。

构造一个哈希表,将不同大小的内存对象挂在哈希表中。如下图:
在这里插入图片描述

C++内存池如何实现

申请内存:加入要申请的内存大小为8字节直接在index = 0处分配一块内存,当然申请的内存小于8字节时也会直接分配8字节的内存。当Free_list[index]为nullptr时从内存中申请一块内存,切割成固定大小‘挂在"Free_list[index]位置。

释放内存:根据内存对象大小,计算index在插入到哈希表中的index位置。

二、简易内存池原理

1、整体设计

1.1 内存池结构

两个链表,RequestMemory和ReleaseMemory。

RequestMemory链表存储的是使用new或者malloc从物理内存申请的还没有被使用的内存块,是一个个的memNode节点。

ReleaseMemory链表存储的是使用完释放回来的固定大小的内存块。
在这里插入图片描述

C++内存池如何实现
### 1.2 申请内存
  • 先在ReleaseMemory找,如果有内存则直接pop使用
  • ReleaseMemory为nullptr时,在RequestMemory中找。
  • RequestMemory的头节点表示的是新申请的,申请内存时只需要在头结点中找,判断头结点的useCount和sumCount是否相等。当useCount等于sumCount时表示已经用完了,就需要去物理内存中申请,否则直接从表头push一块。
  • 去物理内存申请内存时,申请的大小是上一次申请内存块大小的二倍,并将申请的内存块push到RequestMemory头部。

1.3 释放内存

释放内存时,直接将要释放的内存push到ReleaseMemory的头部即可。

2、详细剖析

2.1 blockNode结构

blockNode表示一个个新申请的内存块,用一个结构体进行管理。blockNode成员如下:

  • void* _memory:表示新申请的内存块的首地址
  • BlockNode * _next:存储next节点
  • _objNum:内存块对象的个数

注意:blockNode的大小每次都是上一次的二倍,是一个质数增长,因此应该设置一个上限,当到达一定大小后进行线性增长。这里规定,最大内存块的大小为100000*sizeof(T),T表示的是申请的节点类型。

2.2 单个对象的大小

这里的单个对象指的ReleaseMemory的节点大小,当用户申请的内存大小sizeof(T)小于sizeof(T*)时,为了能够将该对象链接到ReleaseMemory中,应该按照T*进行分配。

3、性能比较

分别使用malloc/free、new/delete、memPool申请和释放110000个内存,时间如下:
在这里插入图片描述

C++内存池如何实现
# 三、简易内存池完整源码
#include<iostream>
#include<vector>
#include<ctime>
using namespace std;
 
template<class T>
class MemPool
{
    
    
private:
	//内存块结构
	typedef struct BlockNode
	{
    
    
		void* _memory;//内存块地址
		BlockNode* _next;//下一个blockNode
		size_t _objNum;//内存块对象的个数
		//构造函数---num表示申请对象的个数
		BlockNode(size_t num)
			:_objNum(num),
			_next(nullptr)
		{
    
    
			_memory = malloc(_objNum*_size);
		}
 
		~BlockNode()
		{
    
    
			free(_memory);
			_memory = nullptr;
			_next = nullptr;
			_objNum = 0;
		}
	}BlockNode;
protected:
	static size_t _size;//单个对象的大小
	T* _releaseMemory = nullptr;//释放的内存
	BlockNode* _requestMemory;//申请的内存块
	size_t _maxNum;//内存块最大的大小
	size_t _useCount;//当前内存块已经使用的对象个数
protected:
	//设置单个对象的大小
	static size_t setSize()
	{
    
    
		return (sizeof(T) >= sizeof(T*) ? sizeof(T):sizeof(T*));
	}
public:
	MemPool()
		:_useCount(0),
		_releaseMemory(nullptr),
		_maxNum(100000*_size)
	{
    
    
		//开始先申请32个_size大小的空间
		_requestMemory = new BlockNode(32);
	}
 
	~MemPool()
	{
    
    
		BlockNode *cur = _requestMemory;
		while (cur)
		{
    
    
			BlockNode* del = cur;
			cur = cur->_next;
			delete del;            //会自动调用~BlockNode()
		}
	}
 
	T* New()
	{
    
    
		//先在releaseMemory中找
		if (_releaseMemory)
		{
    
    
			T* obj = _releaseMemory;
			_releaseMemory = *((T**)_releaseMemory);//releaseMemory的前几个字节存储的是下一个节点的地址
			return obj;
		}
		else
		{
    
    
			//判断requesetMemory中是否还有空闲内存
			if (_requestMemory->_objNum == _useCount)
			{
    
    
				//取物理内存中申请一块内存
				size_t size = 2 * _useCount >= _maxNum ? _maxNum : 2 * _useCount;
				BlockNode* newBlock = new BlockNode(size);
 
				newBlock->_next = _requestMemory;
				_requestMemory = newBlock;
				_useCount = 0;
			}
			//走到这里,一定有内存
			T* obj = (T*)((char*)_requestMemory->_memory+_useCount*_size);
 
			_useCount++;
			return new(obj)T();//用定位new对这块空间初始化
		}
	}
 
	void Delete(T* obj)
	{
    
    
		if (obj)
		{
    
    
			obj->~T();
 
			*((T**)obj) = _releaseMemory;
			_releaseMemory = obj;
		}
	}
};
 
//静态成员变量,类外初始化
template<typename T>
size_t MemPool<T>::_size = MemPool<T>::setSize();
 
struct TreeNode
{
    
    
	int _val;
	TreeNode* _left;
	TreeNode* _right;
};
void test1()
{
    
    
	MemPool<TreeNode> mp;
 
	vector<TreeNode*> v;
	for (int i = 0; i < 10; i++)
	{
    
    
		TreeNode* mem = mp.New();
		v.push_back(mem);
	}
 
	for (int i = 0; i < 10; i++)
	{
    
    
		mp.Delete(v[i]);
	}
}

关于“C++内存池如何实现”这篇文章的内容就介绍到这里,感谢各位的阅读!

猜你喜欢

转载自blog.csdn.net/weixin_42483745/article/details/127250115