PyTorch RNN 实战案例_MNIST手写字体识别

 github代码地址

# 模型1:Pytorch RNN 实现流程
# 加载数据集
# 使得数据集可迭代(每次读取一个Batch)
# 创建模型类
# 初始化模型类
# 初始化损失类
# 训练模型
# 1. 加载数据集
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 2、下载数据集
trainsets = datasets.MNIST(root = './data2',train = True,download = True,transform = transforms.ToTensor())
testsets = datasets.MNIST(root = './data2',train = False,transform=transforms.ToTensor())

class_names = trainsets.classes #查看类别标签
print(class_names)

# 3、查看数据集大小shape
print(trainsets.data.shape)
print(trainsets.targets.shape)
#4、定义超参数
BASH_SIZE = 32 #每批读取的数据大小
EPOCHS = 10 #训练十轮
# 创建数据集的可迭代对象,也就是说一个batch一个batch的读取数据
train_loader = torch.utils.data.DataLoader(dataset = trainsets, batch_size = BASH_SIZE,shuffle = True)
test_loader = torch.utils.data.DataLoader(dataset = testsets, batch_size = BASH_SIZE,shuffle = True)

# 查看一批batch的数据
images, labels = next(iter(test_loader))
print(images.shape)

#6、定义函数,显示一批数据
def imshow(inp, title=None):
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406]) # 均值
    std = np.array([0.229, 0.224, 0.225]) # 标准差
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1) # 限速值限制在0-1之间
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)
#网格显示
out = torchvision.utils.make_grid(images)

imshow(out)
# 7. 定义RNN模型
class RNN_Model(nn.Module):
    def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
        super(RNN_Model, self).__init__()
        self.hidden_dim = hidden_dim
        self.layer_dim = layer_dim
        self.rnn = nn.RNN(input_dim, hidden_dim, layer_dim, batch_first = True, nonlinearity='relu')
        #全连接层:
        self.fc = nn.Linear(hidden_dim,output_dim)
    def forward(self, x):
        h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)
        out, hn = self.rnn(x, h0.detach())
        out = self.fc(out[:, -1, :])
        return out
# 8. 初始化模型
input_dim = 28 #输入维度
hidden_dim = 100 #隐藏的维度
layer_dim = 2 # 2 层RNN
output_dim = 10 #输出维度
#实例化模型传入参数
model = RNN_Model(input_dim, hidden_dim, layer_dim,output_dim)
#判断是否有GPU
device = torch.device('cuda:()' if torch.cuda.is_available() else 'cpu')
#9、定义损失函数
criterion = nn.CrossEntropyLoss()
#10、定义优化函数
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)

#11、输出模型参数
length = len(list(model.parameters()))
#12、循环打印模型参数
for i in range(length):
    print('参数: %d' % (i+1))
    print(list(model.parameters())[i].size())


# 13 、模型训练
sequence_dim = 28 #序列长度
loss_list = [] #保存loss
accuracy_list = [] #保存accuracy
iteration_list = [] #保存循环次数
iter = 0
for epoch in range(EPOCHS):
    for i, (images, labels) in enumerate(train_loader):
        model.train() #声明训练
        #一个batch的数据转换为RNN的输入维度
        images = images.view(-1, sequence_dim, input_dim).requires_grad_().to(device)
        labels = labels.to(device)
        #梯度清零(否则会不断增加)
        optimizer.zero_grad()
        #前向传播
        outputs = model(images)
        #计算损失
        loss = criterion(outputs, labels)
        #反向传播
        loss.backward()
        #更新参数
        optimizer.step()
        #计数自动加一
        iter += 1
        #模型验证
        if iter % 500 == 0:
            model.eval() #声明
            #计算验证的accuracy
            correct = 0.0
            total = 0.0
            #迭代测试集、获取数据、预测
            for images, labels in test_loader:
                images = images.view(-1, sequence_dim, input_dim).to(device)
                #模型预测
                outputs = model(images)
                #获取预测概率的最大值的下标
                predict = torch.max(outputs.data,1)[1]
                #统计测试集的大小
                total += labels.size(0)
                # 统计判断/预测正确的数量
                if torch.cuda.is_available():
                    correct += (predict.gpu() == labels.gpu()).sum()
                else:
                    correct += (predict == labels).sum()
            #计算
            accuracy = (correct / total)/ 100 * 100
            #保存accuracy, loss iteration
            loss_list.append(loss.data)
            accuracy_list.append(accuracy)
            iteration_list.append(iter)
            # 打印信息
            print("epoch : {}, Loss : {}, Accuracy : {}".format(iter, loss.item(), accuracy))

# 可视化 loss
plt.plot(iteration_list, loss_list)
plt.xlabel('Number of Iteration')
plt.ylabel('Loss')
plt.title('RNN')
plt.show()

#可视化 accuracy
plt.plot(iteration_list, accuracy_list, color = 'r')
plt.xlabel('Number of Iteration')
plt.ylabel('Accuracy')
plt.title('RNN')
plt.savefig('RNN_mnist.png')
plt.show()


 

 

猜你喜欢

转载自blog.csdn.net/qq_41479464/article/details/125257946