7.7_adadelta

7.7 AdaDelta算法

除了RMSProp算法以外,另一个常用优化算法AdaDelta算法也针对AdaGrad算法在迭代后期可能较难找到有用解的问题做了改进 [1]。有意思的是,AdaDelta算法没有学习率这一超参数

7.7.1 算法

AdaDelta算法也像RMSProp算法一样,使用了小批量随机梯度 g t \boldsymbol{g}_t gt按元素平方的指数加权移动平均变量 s t \boldsymbol{s}_t st。在时间步0,它的所有元素被初始化为0。给定超参数 0 ≤ ρ < 1 0 \leq \rho < 1 0ρ<1(对应RMSProp算法中的 γ \gamma γ),在时间步 t > 0 t>0 t>0,同RMSProp算法一样计算

s t ← ρ s t − 1 + ( 1 − ρ ) g t ⊙ g t . \boldsymbol{s}_t \leftarrow \rho \boldsymbol{s}_{t-1} + (1 - \rho) \boldsymbol{g}_t \odot \boldsymbol{g}_t. stρst1+(1ρ)gtgt.

与RMSProp算法不同的是,AdaDelta算法还维护一个额外的状态变量 Δ x t \Delta\boldsymbol{x}_t Δxt,其元素同样在时间步0时被初始化为0。我们使用 Δ x t − 1 \Delta\boldsymbol{x}_{t-1} Δxt1来计算自变量的变化量:

g t ′ ← Δ x t − 1 + ϵ s t + ϵ ⊙ g t , \boldsymbol{g}_t' \leftarrow \sqrt{\frac{\Delta\boldsymbol{x}_{t-1} + \epsilon}{\boldsymbol{s}_t + \epsilon}} \odot \boldsymbol{g}_t, gtst+ϵΔxt1+ϵ gt,

其中 ϵ \epsilon ϵ是为了维持数值稳定性而添加的常数,如 1 0 − 5 10^{-5} 105。接着更新自变量:

x t ← x t − 1 − g t ′ . \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \boldsymbol{g}'_t. xtxt1gt.

最后,我们使用 Δ x t \Delta\boldsymbol{x}_t Δxt来记录自变量变化量 g t ′ \boldsymbol{g}'_t gt按元素平方的指数加权移动平均:

Δ x t ← ρ Δ x t − 1 + ( 1 − ρ ) g t ′ ⊙ g t ′ . \Delta\boldsymbol{x}_t \leftarrow \rho \Delta\boldsymbol{x}_{t-1} + (1 - \rho) \boldsymbol{g}'_t \odot \boldsymbol{g}'_t. ΔxtρΔxt1+(1ρ)gtgt.

可以看到,如不考虑 ϵ \epsilon ϵ的影响,AdaDelta算法跟RMSProp算法的不同之处在于使用 Δ x t − 1 \sqrt{\Delta\boldsymbol{x}_{t-1}} Δxt1 来替代学习率 η \eta η

7.7.2 从零开始实现

AdaDelta算法需要对每个自变量维护两个状态变量,即 s t \boldsymbol{s}_t st Δ x t \Delta\boldsymbol{x}_t Δxt。我们按AdaDelta算法中的公式实现该算法。

%matplotlib inline
import torch
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

features, labels = d2l.get_data_ch7()

def init_adadelta_states():
    s_w, s_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    delta_w, delta_b = torch.zeros((features.shape[1], 1), dtype=torch.float32), torch.zeros(1, dtype=torch.float32)
    return ((s_w, delta_w), (s_b, delta_b))

def adadelta(params, states, hyperparams):
    rho, eps = hyperparams['rho'], 1e-5
    for p, (s, delta) in zip(params, states):
        s[:] = rho * s + (1 - rho) * (p.grad.data**2)
        g =  p.grad.data * torch.sqrt((delta + eps) / (s + eps))
        p.data -= g
        delta[:] = rho * delta + (1 - rho) * g * g

使用超参数 ρ = 0.9 \rho=0.9 ρ=0.9来训练模型。

d2l.train_ch7(adadelta, init_adadelta_states(), {
    
    'rho': 0.9}, features, labels)

输出:

loss: 0.243728, 0.062991 sec per epoch

在这里插入图片描述

7.7.3 简洁实现

通过名称为Adadelta的优化器方法,我们便可使用PyTorch提供的AdaDelta算法。它的超参数可以通过rho来指定。

d2l.train_pytorch_ch7(torch.optim.Adadelta, {
    
    'rho': 0.9}, features, labels)

输出:

loss: 0.242104, 0.047702 sec per epoch

在这里插入图片描述

小结

  • AdaDelta算法没有学习率超参数,它通过使用有关自变量更新量平方的指数加权移动平均的项来替代RMSProp算法中的学习率。

参考文献

[1] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.


注:除代码外本节与原书此节基本相同,原书传送门

猜你喜欢

转载自blog.csdn.net/taifyang/article/details/125063670
7.7