Java学习(Day 33)

学习来源:日撸 Java 三百行(61-70天,决策树与集成学习)_闵帆的博客-CSDN博客

主动学习之 ALEC

一、半监督学习

在第 28 天的时候谈到了针对分类问题的监督式学习和无监督式学习. 无监督式学习相对监督式的优点就是不需要标签, 分类结果正确与否有待商榷. 监督式学习需要的数据集含有标签, 就能更加容易确定分类的正确性.

但是在现实世界中的数据集并不是全部都有标签, 可能只有数据集合中一少部分数据具有标签. 针对这个问题就提出了半监督式学习.

例如在第一阶段 A 中, 给出含有 1000 个样本的数据集 S1. S1 中 100 个样本带有标签, 剩余 900 个样本没有标签. 我们通过 S1 中 1000 个样本来生成一个分类器 Classfy. 在第二阶段 B 中, 给出不同于数据集 S1 中所有样本的数据集 S2. S2 中含有 500 个新的样本, 此时再使用分类器 Classfy 对其进行分类.

在这里需要关注的点就是数据集 S1 中那没有标签的 900 个样本会对分类器 Classfy 的精度产生什么样的影响.

二、主动学习

1. 数据集操作

在主动学习之前有两个概念叫做 Close World 和 Open World.

Close World 顾名思义就是在一个封闭的数据集操作. 例如上午给定 1000 个样本, 有权查询其中 100 个样本. 建立分类器后对其它 900 个样本进行分类.

不同于 Close World 的 Close, Open World 需要两部分样本. 一部分用于构建分类器, 另一部分用于测试. 例如上午给定 1000 个样本, 有权查询其中 100 个样本, 并建立分类器. 下午给定 500 个新样本, 要求分类.

为什么只能选样本中的一部分? 这不就和半监督学习中部分有标记样本不谋而合吗.

2. 场景解释

首先机器学习算法从有标签的数据集中学习到一个分类器, 然后再从没有标签的数据集中选择一些样本交由人工标注标签. 然后将这部分有标签的样本加入到含标签数据集中. 简要过程如 图 1 所示.

图 1. 主动学习场景

其中 labled training set 表示有标签的数据集. Machine Learning Model 表示从有标签的数据集中所得到的分类器. unlabeled pool 表示没有标签的数据集. oracle 表示人工, 在流程中起到对无标签样本进行标注标签的作用.

三、三支主动学习

基于聚类的主动学习如下 图 2 所示

图 2. 三支主动学习

整体上看样本 7 和 样本 11 都存在下划线, 表示对这两个样本进行了查询. 两个样本后的 + - 号表示所属的类别, 并以此来对其进行聚类. 两个样本分别做为两棵树的根节点对整棵树进行划分. 形成的两棵新树就是两个簇.

不断重复这个过程, 直到每个聚类形成的簇中全为 + 或者 全为 - 就表示簇为 pure 然后退出运行.

如果出现极端情况, 每一个样本为一簇. 此时我们就规定每一簇中最少要有多少个样本, 在簇不为 pure 时让其 “少数服从多数”.

基于这样的思想提出 ALEC 算法.

四、ALEC算法

1. 思路

ALEC 算法的关键就是选择需要查询的样本.

这个选择需要一个叫做 Density 的值, 并用来评估样本的重要性和独立性.

  1. 以样本 X 为中心, dc 为半径, 一维数据可以获得一个区间, 二维数据可以获得一个圆, 三维数据可以获得一个球, 四维数据可以获得一个超球. 在获得的区间或图形中有多少个样本, 则 X 的密度 Density 就取该值. 值越大, 样本重要性越高.

  2. 比样本 X1 的 Density 更高, 并且离它最近的样本 X2 的距离表示该样本 X 的独立性. 值越大, 表示独立性越高.

样本的独立性与重要性的乘积称为代表性, 以此来对样本进行选择.

2. 具体代码

package activelearning;

import java.io.FileReader;
import java.util.*;

import weka.core.Instances;

/**
 * Active learning through density clustering.
 *
 * @author Shi-Huai Wen Email: [email protected].
 */
public class Alec {
    
    
    /**
     * The whole dataset.
     */
    Instances dataset;

    /**
     * The maximal number of queries that can be provided.
     */
    int maxNumQuery;

    /**
     * The actual number of queries.
     */
    int numQuery;

    /**
     * The radius, also dc in the paper. It is employed for density computation.
     */
    double radius;

    /**
     * The densities of instances, also rho in the paper.
     */
    double[] densities;

    /**
     * distanceToMaster
     */
    double[] distanceToMaster;

    /**
     * Sorted indices, where the first element indicates the instance with the
     * biggest density.
     */
    int[] descendantDensities;

    /**
     * Priority
     */
    double[] priority;

    /**
     * The maximal distance between any pair of points.
     */
    double maximalDistance;

    /**
     * Who is my master?
     */
    int[] masters;

    /**
     * Predicted labels.
     */
    int[] predictedLabels;

    /**
     * Instance status. 0 for unprocessed, 1 for queried, 2 for classified.
     */
    int[] instanceStatusArray;

    /**
     * The descendant indices to show the representativeness of instances in a
     * descendant order.
     */
    int[] descendantRepresentatives;

    /**
     * Indicate the cluster of each instance. It is only used in
     * clusterInTwo(int[]);
     */
    int[] clusterIndices;

    /**
     * Blocks with size no more than this threshold should not be split further.
     */
    int smallBlockThreshold = 3;

    /**
     * *********************************
     * The constructor.
     *
     * @param paraFilename The data filename.
     *                     *********************************
     */
    public Alec(String paraFilename) {
    
    
        try {
    
    
            FileReader tempReader = new FileReader(paraFilename);
            dataset = new Instances(tempReader);
            dataset.setClassIndex(dataset.numAttributes() - 1);
            tempReader.close();
        } catch (Exception ee) {
    
    
            System.out.println("Alec Error" + ee);
            System.exit(0);
        } // Of fry
        computeMaximalDistance();
        clusterIndices = new int[dataset.numInstances()];
    }// Of the constructor

    /**
     * *********************************
     * Merge sort in descendant order to obtain an index array. The original
     * array is unchanged. The method should be tested further. <br>
     * Examples: input [1.2, 2.3, 0.4, 0.5], output [1, 0, 3, 2]. <br>
     * input [3.1, 5.2, 6.3, 2.1, 4.4], output [2, 1, 4, 0, 3].
     *
     * @param paraArray the original array
     * @return The sorted indices.
     * *********************************
     */
    public static int[] mergeSortToIndices(double[] paraArray) {
    
    
        int tempLength = paraArray.length;
        int[][] resultMatrix = new int[2][tempLength];// For merge sort.

        // Initialize
        int tempIndex = 0;
        for (int i = 0; i < tempLength; i++) {
    
    
            resultMatrix[tempIndex][i] = i;
        } // Of for i

        // Merge
        int tempCurrentLength = 1;
        // The indices for current merged groups.
        int tempFirstStart, tempSecondStart, tempSecondEnd;

        while (tempCurrentLength < tempLength) {
    
    
            // Divide into a number of groups.
            // Here the boundary is adaptive to array length not equal to 2^k.
            for (int i = 0; i < Math.ceil((tempLength + 0.0) / tempCurrentLength / 2); i++) {
    
    
                // Boundaries of the group
                tempFirstStart = i * tempCurrentLength * 2;

                tempSecondStart = tempFirstStart + tempCurrentLength;

                tempSecondEnd = tempSecondStart + tempCurrentLength - 1;
                if (tempSecondEnd >= tempLength) {
    
    
                    tempSecondEnd = tempLength - 1;
                } // Of if

                // Merge this group
                int tempFirstIndex = tempFirstStart;
                int tempSecondIndex = tempSecondStart;
                int tempCurrentIndex = tempFirstStart;

                if (tempSecondStart >= tempLength) {
    
    
                    for (int j = tempFirstIndex; j < tempLength; j++) {
    
    
                        resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] = resultMatrix[tempIndex
                                % 2][j];
                        tempFirstIndex++;
                        tempCurrentIndex++;
                    } // Of for j
                    break;
                } // Of if

                while ((tempFirstIndex <= tempSecondStart - 1)
                        && (tempSecondIndex <= tempSecondEnd)) {
    
    

                    if (paraArray[resultMatrix[tempIndex
                            % 2][tempFirstIndex]] >= paraArray[resultMatrix[tempIndex
                            % 2][tempSecondIndex]]) {
    
    
                        resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] = resultMatrix[tempIndex
                                % 2][tempFirstIndex];
                        tempFirstIndex++;
                    } else {
    
    
                        resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] = resultMatrix[tempIndex
                                % 2][tempSecondIndex];
                        tempSecondIndex++;
                    } // Of if
                    tempCurrentIndex++;
                } // Of while

                // Remaining part
                for (int j = tempFirstIndex; j < tempSecondStart; j++) {
    
    
                    resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] = resultMatrix[tempIndex
                            % 2][j];
                    tempCurrentIndex++;
                } // Of for j
                for (int j = tempSecondIndex; j <= tempSecondEnd; j++) {
    
    
                    resultMatrix[(tempIndex + 1) % 2][tempCurrentIndex] = resultMatrix[tempIndex
                            % 2][j];
                    tempCurrentIndex++;
                } // Of for j
            } // Of for i

            tempCurrentLength *= 2;
            tempIndex++;
        } // Of while

        return resultMatrix[tempIndex % 2];
    }// Of mergeSortToIndices

    /**
     * ********************
     * The Euclidean distance between two instances. Other distance measures
     * unsupported for simplicity.
     *
     * @param paraI The index of the first instance.
     * @param paraJ The index of the second instance.
     * @return The distance.
     * ********************
     */
    public double distance(int paraI, int paraJ) {
    
    
        double resultDistance = 0;
        double tempDifference;
        for (int i = 0; i < dataset.numAttributes() - 1; i++) {
    
    
            tempDifference = dataset.instance(paraI).value(i) - dataset.instance(paraJ).value(i);
            resultDistance += tempDifference * tempDifference;
        } // Of for i
        resultDistance = Math.sqrt(resultDistance);

        return resultDistance;
    }// Of distance

    /**
     * *********************************
     * Compute the maximal distance. The result is stored in a member variable.
     * *********************************
     */
    public void computeMaximalDistance() {
    
    
        maximalDistance = 0;
        double tempDistance;
        for (int i = 0; i < dataset.numInstances(); i++) {
    
    
            for (int j = 0; j < dataset.numInstances(); j++) {
    
    
                tempDistance = distance(i, j);
                if (maximalDistance < tempDistance) {
    
    
                    maximalDistance = tempDistance;
                } // Of if
            } // Of for j
        } // Of for i

        System.out.println("maximalDistance = " + maximalDistance);
    }// Of computeMaximalDistance

    /**
     * *****************
     * Compute the densities using Gaussian kernel.
     * *****************
     */
    public void computeDensitiesGaussian() {
    
    
        System.out.println("radius = " + radius);
        densities = new double[dataset.numInstances()];
        double tempDistance;

        for (int i = 0; i < dataset.numInstances(); i++) {
    
    
            for (int j = 0; j < dataset.numInstances(); j++) {
    
    
                tempDistance = distance(i, j);
                densities[i] += Math.exp(-tempDistance * tempDistance / radius / radius);
            } // Of for j
        } // Of for i

        System.out.println("The densities are " + Arrays.toString(densities) + "\r\n");
    }// Of computeDensitiesGaussian

    /**
     * *********************************
     * Compute distanceToMaster, the distance to its master.
     * *********************************
     */
    public void computeDistanceToMaster() {
    
    
        distanceToMaster = new double[dataset.numInstances()];
        masters = new int[dataset.numInstances()];
        descendantDensities = new int[dataset.numInstances()];
        instanceStatusArray = new int[dataset.numInstances()];

        descendantDensities = mergeSortToIndices(densities);
        distanceToMaster[descendantDensities[0]] = maximalDistance;

        double tempDistance;
        for (int i = 1; i < dataset.numInstances(); i++) {
    
    
            // Initialize.
            distanceToMaster[descendantDensities[i]] = maximalDistance;
            for (int j = 0; j <= i - 1; j++) {
    
    
                tempDistance = distance(descendantDensities[i], descendantDensities[j]);
                if (distanceToMaster[descendantDensities[i]] > tempDistance) {
    
    
                    distanceToMaster[descendantDensities[i]] = tempDistance;
                    masters[descendantDensities[i]] = descendantDensities[j];
                } // Of if
            } // Of for j
        } // Of for i
        System.out.println("First compute, masters = " + Arrays.toString(masters));
        System.out.println("descendantDensities = " + Arrays.toString(descendantDensities));
    }// Of computeDistanceToMaster

    /**
     * *********************************
     * Compute priority. Element with higher priority is more likely to be
     * selected as a cluster center. Now it is rho * distanceToMaster. It can
     * also be rho^alpha * distanceToMaster.
     * *********************************
     */
    public void computePriority() {
    
    
        priority = new double[dataset.numInstances()];
        for (int i = 0; i < dataset.numInstances(); i++) {
    
    
            priority[i] = densities[i] * distanceToMaster[i];
        } // Of for i
    }// Of computePriority

    /**
     * ************************
     * The block of a node should be same as its master. This recursive method
     * is efficient.
     *
     * @param paraIndex The index of the given node.
     * @return The cluster index of the current node.
     * ************************
     */
    public int coincideWithMaster(int paraIndex) {
    
    
        if (clusterIndices[paraIndex] == -1) {
    
    
            int tempMaster = masters[paraIndex];
            clusterIndices[paraIndex] = coincideWithMaster(tempMaster);
        } // Of if

        return clusterIndices[paraIndex];
    }// Of coincideWithMaster

    /**
     * ************************
     * Cluster a block in two. According to the master tree.
     *
     * @param paraBlock The given block.
     * @return The new blocks where the two most represent instances serve as the root.
     * ************************
     */
    public int[][] clusterInTwo(int[] paraBlock) {
    
    
        // Reinitialize. In fact, only instances in the given block is
        // considered.
        Arrays.fill(clusterIndices, -1);

        // Initialize the cluster number of the two roots.
        for (int i = 0; i < 2; i++) {
    
    
            clusterIndices[paraBlock[i]] = i;
        } // Of for i

        for (int j : paraBlock) {
    
    
            if (clusterIndices[j] != -1) {
    
    
                // Already have a cluster number.
                continue;
            } // Of if

            clusterIndices[j] = coincideWithMaster(masters[j]);
        } // Of for i

        // The sub blocks.
        int[][] resultBlocks = new int[2][];
        int tempFistBlockCount = 0;
        for (int clusterIndex : clusterIndices) {
    
    
            if (clusterIndex == 0) {
    
    
                tempFistBlockCount++;
            } // Of if
        } // Of for i
        resultBlocks[0] = new int[tempFistBlockCount];
        resultBlocks[1] = new int[paraBlock.length - tempFistBlockCount];

        // Copy. You can design shorter code when the number of clusters is
        // greater than 2.
        int tempFirstIndex = 0;
        int tempSecondIndex = 0;
        for (int j : paraBlock) {
    
    
            if (clusterIndices[j] == 0) {
    
    
                resultBlocks[0][tempFirstIndex] = j;
                tempFirstIndex++;
            } else {
    
    
                resultBlocks[1][tempSecondIndex] = j;
                tempSecondIndex++;
            } // Of if
        } // Of for i

        System.out.println("Split (" + paraBlock.length + ") instances "
                + Arrays.toString(paraBlock) + "\r\nto (" + resultBlocks[0].length + ") instances "
                + Arrays.toString(resultBlocks[0]) + "\r\nand (" + resultBlocks[1].length
                + ") instances " + Arrays.toString(resultBlocks[1]));
        return resultBlocks;
    }// Of clusterInTwo

    /**
     * *********************************
     * Classify instances in the block by simple voting.
     *
     * @param paraBlock The given block.
     * *********************************
     */
    public void vote(int[] paraBlock) {
    
    
        int[] tempClassCounts = new int[dataset.numClasses()];
        for (int j : paraBlock) {
    
    
            if (instanceStatusArray[j] == 1) {
    
    
                tempClassCounts[(int) dataset.instance(j).classValue()]++;
            } // Of if
        } // Of for i

        int tempMaxClass = -1;
        int tempMaxCount = -1;
        for (int i = 0; i < tempClassCounts.length; i++) {
    
    
            if (tempMaxCount < tempClassCounts[i]) {
    
    
                tempMaxClass = i;
                tempMaxCount = tempClassCounts[i];
            } // Of if
        } // Of for i

        // Classify unprocessed instances.
        for (int j : paraBlock) {
    
    
            if (instanceStatusArray[j] == 0) {
    
    
                predictedLabels[j] = tempMaxClass;
                instanceStatusArray[j] = 2;
            } // Of if
        } // Of for i
    }// Of vote

    /**
     * *********************************
     * Cluster based active learning. Prepare for
     *
     * @param paraRatio               The ratio of the maximal distance as the dc.
     * @param paraMaxNumQuery         The maximal number of queries for the whole dataset.
     * @param paraSmallBlockThreshold The small block threshold.
     * *********************************
     */
    public void clusterBasedActiveLearning(double paraRatio, int paraMaxNumQuery,
                                           int paraSmallBlockThreshold) {
    
    
        radius = maximalDistance * paraRatio;
        smallBlockThreshold = paraSmallBlockThreshold;

        maxNumQuery = paraMaxNumQuery;
        predictedLabels = new int[dataset.numInstances()];

        for (int i = 0; i < dataset.numInstances(); i++) {
    
    
            predictedLabels[i] = -1;
        } // Of for i

        computeDensitiesGaussian();
        computeDistanceToMaster();
        computePriority();
        descendantRepresentatives = mergeSortToIndices(priority);
        System.out.println(
                "descendantRepresentatives = " + Arrays.toString(descendantRepresentatives));

        numQuery = 0;
        clusterBasedActiveLearning(descendantRepresentatives);
    }// Of clusterBasedActiveLearning

    /**
     * *********************************
     * Cluster based active learning.
     *
     * @param paraBlock The given block. This block must be sorted according to the priority in descendant order.
     * *********************************
     */
    public void clusterBasedActiveLearning(int[] paraBlock) {
    
    
        System.out.println("clusterBasedActiveLearning for block " + Arrays.toString(paraBlock));

        // Step 1. How many labels are queried for this block.
        int tempExpectedQueries = (int) Math.sqrt(paraBlock.length);
        int tempNumQuery = 0;
        for (int j : paraBlock) {
    
    
            if (instanceStatusArray[j] == 1) {
    
    
                tempNumQuery++;
            } // Of if
        } // Of for i

        // Step 2. Vote for small blocks.
        if ((tempNumQuery >= tempExpectedQueries) && (paraBlock.length <= smallBlockThreshold)) {
    
    
            System.out.println("" + tempNumQuery + " instances are queried, vote for block: \r\n"
                    + Arrays.toString(paraBlock));
            vote(paraBlock);

            return;
        } // Of if

        // Step 3. Query enough labels.
        for (int i = 0; i < tempExpectedQueries; i++) {
    
    
            if (numQuery >= maxNumQuery) {
    
    
                System.out.println("No more queries are provided, numQuery = " + numQuery + ".");
                vote(paraBlock);
                return;
            } // Of if

            if (instanceStatusArray[paraBlock[i]] == 0) {
    
    
                instanceStatusArray[paraBlock[i]] = 1;
                predictedLabels[paraBlock[i]] = (int) dataset.instance(paraBlock[i]).classValue();
                numQuery++;
            } // Of if
        } // Of for i

        // Step 4. Pure?
        int tempFirstLabel = predictedLabels[paraBlock[0]];
        boolean tempPure = true;
        for (int i = 1; i < tempExpectedQueries; i++) {
    
    
            if (predictedLabels[paraBlock[i]] != tempFirstLabel) {
    
    
                tempPure = false;
                break;
            } // Of if
        } // Of for i
        if (tempPure) {
    
    
            System.out.println("Classify for pure block: " + Arrays.toString(paraBlock));
            for (int i = tempExpectedQueries; i < paraBlock.length; i++) {
    
    
                if (instanceStatusArray[paraBlock[i]] == 0) {
    
    
                    predictedLabels[paraBlock[i]] = tempFirstLabel;
                    instanceStatusArray[paraBlock[i]] = 2;
                } // Of if
            } // Of for i
            return;
        } // Of if

        // Step 5. Split in two and process them independently.
        int[][] tempBlocks = clusterInTwo(paraBlock);
        for (int i = 0; i < 2; i++) {
    
    
            // Attention: recursive invoking here.
            clusterBasedActiveLearning(tempBlocks[i]);
        } // Of for i
    }// Of clusterBasedActiveLearning

    /**
     * ******************
     * Show the statistics information.
     * ******************
     */
    public String toString() {
    
    
        int[] tempStatusCounts = new int[3];
        double tempCorrect = 0;
        for (int i = 0; i < dataset.numInstances(); i++) {
    
    
            tempStatusCounts[instanceStatusArray[i]]++;
            if (predictedLabels[i] == (int) dataset.instance(i).classValue()) {
    
    
                tempCorrect++;
            } // Of if
        } // Of for i

        String resultString = "(unhandled, queried, classified) = "
                + Arrays.toString(tempStatusCounts);
        resultString += "\r\nCorrect = " + tempCorrect + ", accuracy = "
                + (tempCorrect / dataset.numInstances());

        return resultString;
    }// Of toString

    /**
     * *********************************
     * The entrance of the program.
     *
     * @param args: Not used now.
     * *********************************
     */
    public static void main(String[] args) {
    
    
        long tempStart = System.currentTimeMillis();

        System.out.println("Starting ALEC.");
        String arffFilename = "D:/Work/sampledata/iris.arff";


        Alec tempAlec = new Alec(arffFilename);
        // The settings for iris
        tempAlec.clusterBasedActiveLearning(0.15, 30, 3);

        System.out.println(tempAlec);

        long tempEnd = System.currentTimeMillis();
        System.out.println("Runtime: " + (tempEnd - tempStart) + "ms.");
    }// Of main
} // Of class Alec

3. 运行截图


总结

代码太长了, 然后这部分也只梳理了简单的思想, 要想完全理解 ALEC 算法还需要对代码进一步理解, 看来这部分还需要写一篇博客才能完成. 想法和实现之间真的像是一条巨大的鸿沟, 加油吧.

猜你喜欢

转载自blog.csdn.net/qq_44309220/article/details/124760354
今日推荐