LongAdder 原理

持续创作,加速成长!这是我参与「掘金日新计划 · 6 月更文挑战」的第7天,点击查看活动详情

设计思路

AtomicLong中有个内部变量value保存着实际的long值,所有的操作都是针对该变量进行。也就是说,高并发环境下,value变量其实是一个热点,也就是N个线程竞争一个热点。LongAdder的基本思路就是分散热点,将value值分散到一个数组中,不同线程会命中到数组的不同槽中,各个线程只对自己槽中的那个值进行CAS操作,这样热点就被分散了,冲突的概率就小很多。如果要获取真正的long值,只要将各个槽中的变量值累加返回。

image.png

LongAdder 的内部结构

LongAdder内部有一个base变量,一个Cell[]数组:

  • base变量:非竞态条件下,直接累加到该变量上
  • Cell[]数组:竞态条件下,累加个各个线程自己的槽Cell[i]中
/** Number of CPUS, to place bound on table size */ 
// CPU核数,用来决定槽数组的大小 
static final int NCPU = Runtime.getRuntime().availableProcessors(); 

/** 
* Table of cells. When non‐null, size is a power of 2. 
*/ 
// 数组槽,大小为2的次幂 
transient volatile Cell[] cells; 

/** 
* Base value, used mainly when there is no contention, but also as 
* a fallback during table initialization races. Updated via CAS. 
*/ 
/** 
* 基数,在两种情况下会使用: 
* 1. 没有遇到并发竞争时,直接使用base累加数值18 * 2. 初始化cells数组时,必须要保证cells数组只能被初始化一次(即只有一个线程能对cell s初始化), 
* 其他竞争失败的线程会讲数值累加到base上 
*/ 
transient volatile long base; 

/** 
* Spinlock (locked via CAS) used when resizing and/or creating Cells. 
*/ 
transient volatile int cellsBusy; 
复制代码

定义了一个内部Cell类,这就是我们之前所说的槽,每个Cell对象存有一个value值,可以通过 Unsafe来CAS操作它的值:

LongAdder#add 方法

LongAdder#add方法的逻辑如下:

public void add(long x) {
    Cell[] as; long b, v; int m; Cell a;
    if ((as = cells) != null || !casBase(b = base, b + x)) {
        boolean uncontended = true;
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[getProbe() & m]) == null ||
            !(uncontended = a.cas(v = a.value, v + x)))
            longAccumulate(x, null, uncontended);
    }
}
复制代码

只有从未出现过并发冲突的时候,base基数才会使用到,一旦出现了并发冲突,之后所有的操作都只针对Cell[]数组中的单元Cell。 如果Cell[]数组未初始化,会调用父类的longAccumelate去初始化Cell[],如果Cell[]已经初始化 但是冲突发生在Cell单元内,则也调用父类的longAccumelate,此时可能就需要对Cell[]扩容了。这也是LongAdder设计的精妙之处:尽量减少热点冲突,不到最后万不得已,尽量将CAS操作延迟。

Striped64#longAccumulate 方法

整个Striped64#longAccumulate的如下:

final void longAccumulate(long x, LongBinaryOperator fn, boolean wasUncontended) {
        //获取当前线程的threadLocalRandomProbe值作为hash值,如果当前线程的threadLocalRandomProbe为0,说明当前线程是第一次进入该方法,则强制设置线程的threadLocalRandomProbe为ThreadLocalRandom类的成员静态私有变量probeGenerator的值,后面会详细将hash值的生成;
        //另外需要注意,如果threadLocalRandomProbe=0,代表新的线程开始参与cell争用的情况
        //1.当前线程之前还没有参与过cells争用(也许cells数组还没初始化,进到当前方法来就是为了初始化cells数组后争用的),是第一次执行base的cas累加操作失败;
        //2.或者是在执行add方法时,对cells某个位置的Cell的cas操作第一次失败,则将wasUncontended设置为false,那么这里会将其重新置为true;第一次执行操作失败;
       //凡是参与了cell争用操作的线程threadLocalRandomProbe都不为0;
        int h;
        if ((h = getProbe()) == 0) {
            //初始化ThreadLocalRandom;
            ThreadLocalRandom.current(); // force initialization
            //将h设置为0x9e3779b9
            h = getProbe();
            //设置未竞争标记为true
            wasUncontended = true;
        }
        //cas冲突标志,表示当前线程hash到的Cells数组的位置,做cas累加操作时与其它线程发生了冲突,cas失败;collide=true代表有冲突,collide=false代表无冲突 
        boolean collide = false; 
        for (;;) {
            Cell[] as; Cell a; int n; long v;
            //这个主干if有三个分支
            //1.主分支一:处理cells数组已经正常初始化了的情况(这个if分支处理add方法的四个条件中的3和4)
            //2.主分支二:处理cells数组没有初始化或者长度为0的情况;(这个分支处理add方法的四个条件中的1和2)
            //3.主分支三:处理如果cell数组没有初始化,并且其它线程正在执行对cells数组初始化的操作,及cellbusy=1;则尝试将累加值通过cas累加到base上
            //先看主分支一
            if ((as = cells) != null && (n = as.length) > 0) {
                /**
                 *内部小分支一:这个是处理add方法内部if分支的条件3:如果被hash到的位置为null,说明没有线程在这个位置设置过值,没有竞争,可以直接使用,则用x值作为初始值创建一个新的Cell对象,对cells数组使用cellsBusy加锁,然后将这个Cell对象放到cells[m%cells.length]位置上 
                 */
                if ((a = as[(n - 1) & h]) == null) {
                    //cellsBusy == 0 代表当前没有线程cells数组做修改
                    if (cellsBusy == 0) {
                        //将要累加的x值作为初始值创建一个新的Cell对象,
                        Cell r = new Cell(x); 
                        //如果cellsBusy=0无锁,则通过cas将cellsBusy设置为1加锁
                        if (cellsBusy == 0 && casCellsBusy()) {
                            //标记Cell是否创建成功并放入到cells数组被hash的位置上
                            boolean created = false;
                            try {
                                Cell[] rs; int m, j;
                                //再次检查cells数组不为null,且长度不为空,且hash到的位置的Cell为null
                                if ((rs = cells) != null &&
                                    (m = rs.length) > 0 &&
                                    rs[j = (m - 1) & h] == null) {
                                    //将新的cell设置到该位置
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                //去掉锁
                                cellsBusy = 0;
                            }
                            //生成成功,跳出循环
                            if (created)
                                break;
                            //如果created为false,说明上面指定的cells数组的位置cells[m%cells.length]已经有其它线程设置了cell了,继续执行循环。
                            continue;
                        }
                    }
                   //如果执行的当前行,代表cellsBusy=1,有线程正在更改cells数组,代表产生了冲突,将collide设置为false
                    collide = false;
 
                /**
                 *内部小分支二:如果add方法中条件4的通过cas设置cells[m%cells.length]位置的Cell对象中的value值设置为v+x失败,说明已经发生竞争,将wasUncontended设置为true,跳出内部的if判断,最后重新计算一个新的probe,然后重新执行循环;
                 */
                } else if (!wasUncontended)  
                    //设置未竞争标志位true,继续执行,后面会算一个新的probe值,然后重新执行循环。 
                    wasUncontended = true;
                /**
                *内部小分支三:新的争用线程参与争用的情况:处理刚进入当前方法时threadLocalRandomProbe=0的情况,也就是当前线程第一次参与cell争用的cas失败,这里会尝试将x值加到cells[m%cells.length]的value ,如果成功直接退出  
                */
                else if (a.cas(v = a.value, ((fn == null) ? v + x :
                                             fn.applyAsLong(v, x))))
                    break;
                /**
                 *内部小分支四:分支3处理新的线程争用执行失败了,这时如果cells数组的长度已经到了最大值(大于等于cup数量),或者是当前cells已经做了扩容,则将collide设置为false,后面重新计算prob的值*/
                else if (n >= NCPU || cells != as)
                    collide = false;
                /**
                 *内部小分支五:如果发生了冲突collide=false,则设置其为true;会在最后重新计算hash值后,进入下一次for循环
                 */
                else if (!collide)
                    //设置冲突标志,表示发生了冲突,需要再次生成hash,重试。 如果下次重试任然走到了改分支此时collide=true,!collide条件不成立,则走后一个分支
                    collide = true;
                /**
                 *内部小分支六:扩容cells数组,新参与cell争用的线程两次均失败,且符合库容条件,会执行该分支
                 */
                else if (cellsBusy == 0 && casCellsBusy()) {
                    try {
                        //检查cells是否已经被扩容
                        if (cells == as) {      // Expand table unless stale
                            Cell[] rs = new Cell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            cells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                //为当前线程重新计算hash值
                h = advanceProbe(h);
 
            //这个大的分支处理add方法中的条件1与条件2成立的情况,如果cell表还未初始化或者长度为0,先尝试获取cellsBusy锁。
            }else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
                boolean init = false;
                try {  // Initialize table
                    //初始化cells数组,初始容量为2,并将x值通过hash&1,放到0个或第1个位置上
                    if (cells == as) {
                        Cell[] rs = new Cell[2];
                        rs[h & 1] = new Cell(x);
                        cells = rs;
                        init = true;
                    }
                } finally {
                    //解锁
                    cellsBusy = 0;
                }
                //如果init为true说明初始化成功,跳出循环
                if (init)
                    break;
            }
            /**
             *如果以上操作都失败了,则尝试将值累加到base上;
             */
            else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x)))) // Fall back on using base
                break;  
        }
    }
复制代码

LongAdder#sum方法

/**
 * 返回累加的和,也就是"当前时刻"的计数值
 * 注意: 高并发时,除非全局加锁,否则得不到程序运行中某个时刻绝对准确的值
 * 此返回值可能不是绝对准确的,因为调用这个方法时还有其他线程可能正在进行计数累加,
 * 方法的返回时刻和调用时刻不是同一个点,在有并发的情况下,这个值只是近似准确的计数值
 */
public long sum() {
    Cell[] as = cells; Cell a;
    long sum = base;
    if (as != null) {
        for (int i = 0; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}
复制代码

由于计算总和时没有对Cell数组进行加锁,所以在累加过程中可能有其他线程对Cell中的值进行了修改,也有可能对数组进行了扩容,所以sum返回的值并不是非常精确的,其返回值并不是一个调用sum方法时的原子快照值。

LongAccumulator

LongAccumulator是LongAdder的增强版。LongAdder只能针对数值的进行加减运算,而 LongAccumulator提供了自定义的函数操作。其构造函数如下:通过LongBinaryOperator,可以自定义对入参的任意操作,并返回结果(LongBinaryOperator 接收2个long作为参数,并返回1个long)。LongAccumulator内部原理和LongAdder几乎完全一样,都是利用了父类Striped64的longAccumulate方法。

public class LongAccumulatorTest { 
    
    public static void main(String[] args) throws InterruptedException { 
        // 累加 x+y 
        LongAccumulator accumulator = new LongAccumulator((x, y) -> x + y, 0); 
        ExecutorService executor = Executors.newFixedThreadPool(8); 
        // 1到9累加 
        IntStream.range(1, 10).forEach(i -> executor.submit(() -> 
        accumulator.accumulate(i))); 
        Thread.sleep(2000); 
        System.out.println(accumulator.getThenReset()); 
    } 
}
复制代码

参考资料

猜你喜欢

转载自juejin.im/post/7103872764984950797