鸟哥的Linux私房菜学习笔记2

个人计算机架构与周边设备

整个主机板上面最重要的就是芯片组了!而芯片组通常又分为两个桥接器来控制各组件的沟通, 分别是:(1)北桥:负责连结速度较快的CPU、主内存与显示卡等组件;(2)南桥:负责连接速度较慢的周边介面, 包括硬盘、USB、网络卡等等。

与Intel不同的地方在於主内存是直接与CPU沟通而不透过北桥!从前面的说明我们可以知道CPU的数据主要都是来自於主内存提供, 因此AMD为了加速这两者的沟通,所以将内存控制组件整合到CPU当中, 理论上这样可以加速CPU与主内存的传输速度!这是两种CPU在架构上面主要的差异点。

Intel芯片架构

Amd芯片架构


主要的组件为:CPU、主内存、磁盘设备(IDE/SATA)、系统总线芯片组(南桥/北桥)、显示卡介面(PCI-Express)与其他介面卡(PCI)。 底下的各项组件在讲解时,请参考Intel芯片组架构与技嘉主机板各组件来印证喔!


CPU

x86个人计算机的CPU主要供应商为Intel与AMD,目前(2009)主流的CPU都是双核以上的架构了! 原本的单核心CPU仅有一个运算单元,所谓的多核心则是在一颗CPU封装当中嵌入了两个以上的运算核心, 简单的说,就是一个实体的CPU外壳中,含有两个以上的CPU单元就是了。

不同的微指令集会导致CPU工作效率的优劣。除了这点之外, CPU效能的比较还有什么呢?那就是CPU的频率了!什么是频率呢?简单的说, 频率就是CPU每秒钟可以进行的工作次数。 所以频率越高表示这颗CPU单位时间内可以作更多的事情。举例来说,Intel的Core 2 Duo型号E8400的CPU频率为3.0GHz, 表示这颗CPU在一秒内可以进行3.0x109次工作,每次工作都可以进行少数的指令运作之意。

Tips:

注意,不同的CPU之间不能单纯的以频率来判断运算效能喔!这是因为每颗CPU的微指令集不相同,架构也不见得一样, 每次频率能够进行的工作指令数也不同之故!所以,频率目前仅能用来比较同款CPU的速度!

  • CPU的『外频』与『倍频』

所谓的外频指的是CPU与外部组件进行数据传输时的速度,倍频则是 CPU 内部用来加速工作效能的一个倍数, 两者相乘才是CPU的频率速度。我们以刚刚Intel Core 2 Duo E8400 CPU来说,他的频率是3.0GHz, 而外频是333MHz,因此倍频就是9倍罗!(3.0G=333Mx9, 其中1G=1000M)

  • 32位与64位
CPU运算的数据都是由主内存提供的,主内存与CPU的沟通速度靠的是外部频率, 那么每次工作可以传送的数据量有多大呢?那就是系统总线的功能了。一般主机板芯片组有分北桥与南桥,  北桥的系统总线称为系统系统总线,因为是内存传输的主要通道,所以速度较快。 南桥就是所谓的输入输出(I/O)系统总线 ,主要在联系硬盘、USB、网络卡等周边设备。

北桥所支持的频率我们称为前端系统总线速度(Front Side Bus, FSB), 而每次传送的位数则是系统总线宽度。 那所谓的系统总线频宽则是:『FSBx系统总线宽度』亦即每秒钟可传送的最大数据量。 目前常见的系统总线宽度有32/64位(bits)。

CPU每次能够处理的数据量称为字长大小(word size), 字长大小依据CPU的设计而有32位与64位。我们现在所称的计算机是32或64位主要是依据这个 CPU解析的字长大小而来的


内存

 个人计算机的主内存主要组件为动态随机访问内存(Dynamic Random Access Memory, DRAM), 随机访问内存只有在通电时才能记录与使用,断电后数据就消失了。因此我们也称这种RAM为挥发性內存。

DRAM根据技术的更新又分好几代,而使用上较广泛的有所谓的SDRAM与DDR SDRAM两种。 这两种内存的差别除了在於脚位与工作电压上的不同之外,DDR是所谓的双倍数据传送速度(Double Data Rate), 他可以在一次工作周期中进行两次数据的传送,感觉上就好像是CPU的倍频啦! 所以传输频率方面比SDRAM还要好。

DDR SDRAM又依据技术的发展,有DDR, DDRII, DDRIII等等,其中,DDRII 的频率倍数则是 4 倍喔!

服务器来说,主内存的容量有时比CPU的速度还要来的重要的

  • 双通道设计

由於所有的数据都必须要存放在主内存,所以主内存的数据宽度当然是越大越好。 但传统的系统总线宽度一般大约仅达64位,为了要加大这个宽度,因此芯片组厂商就将两个主内存汇整在一起, 如果一支内存可达64位,两支内存就可以达到128位了,这就是双通道的设计理念。

  • DRAM与SRAM

除了主内存之外,事实上整部个人计算机当中还有许许多多的内存存在喔!最为我们所知的就是CPU内的第二层缓存内存。 我们现在知道CPU的数据都是由主内存提供,但主内存的数据毕竟得经由北桥送到CPU内。 如果某些很常用的程序或数据可以放置到CPU内部的话,那么CPU数据的读取就不需要透过北桥了! 对於效能来说不就可以大大的提升了?这就是第二层缓存的设计概念。

  • 只读内存(ROM)

主机板上面的组件是非常多的,而每个组件的参数又具有可调整性。举例来说,CPU与内存的频率是可调整的; 而主机板上面如果有内建的网络卡或者是显示卡时,该功能是否要启动与该功能的各项参数, 是被记录到主机板上头的一个称为CMOS的芯片上,这个芯片需要藉著额外的电源来发挥记录功能, 这也是为什么你的主机板上面会有一颗电池的缘故。

那CMOS内的数据如何读取与更新呢?还记得你的计算机在开机的时候可以按下[Del]按键来进入一个名为BIOS的画面吧?BIOS(Basic Input Output System)是一套程序,这套程序是写死到主机板上面的一个内存芯片中, 这个内存芯片在没有通电时也能够将数据记录下来,那就是只读内存(Read Only Memory, ROM)。 ROM是一种非挥发性的内存。另外,BIOS对於个人计算机来说是非常重要的, 因为他是系统在开机的时候首先会去读取的一个小程序


显示卡

显示卡又称为VGA(Video Graphics Array),他对於图形影像的显示扮演相当关键的角色。 一般对於图形影像的显示重点在於解析度与色彩深度,因为每个图像显示的颜色会占用掉内存, 因此显示卡上面会有一个内存的容量,这个显示卡内存容量将会影响到最终你的萤幕解析度与色彩深度的喔!


GPU的由来

除了显示卡内存之外,现在由於三度空间游戏(3D game)与一些3D动画的流行,因此显示卡的『运算能力』越来越重要。 一些3D的运算早期是交给CPU去运作的,但是CPU并非完全针对这些3D来进行设计的,而且CPU平时已经非常忙碌了呢! 所以后来显示卡厂商直接在显示卡上面嵌入一个3D加速的芯片,这就是所谓的GPU称谓的由来。

例题:

假设你的桌面使用1024x768解析度,且使用全彩(每个像素占用3bytes的容量),请问你的显示卡至少需要多少内存才能使用这样的彩度?
答:
因为1024x768解析度中会有786432个像素,每个像素占用3bytes,所以总共需要2.25MBytes以上才行! 但如果考虑萤幕的更新率(每秒钟萤幕的更新次数),显示卡的内存还是越大越好!


硬盘与储存设备

在物理组成分面,每个磁区大小为512Bytes,这个值是不会改变的。而磁区组成一个圆就成为磁轨(track), 如果是在多碟的硬盘上面,在所有磁碟盘上面的同一个磁轨可以组成一个磁柱(Cylinder), 磁柱也是一般我们分割硬盘时的最小单位了

在计算整个硬盘的储存量时,简单的计算公式就是:『header数量 * 每个header负责的磁柱数量 * 每个磁柱所含有的磁区数量 * 磁区的容量』,单位换算为『header * cylinder/header * secter/cylinder * 512bytes/secter』

  • 传输介面
由於传输速度的需求提升,目前硬盘与主机系统的联系主要有几种传输介面规格:

两款硬盘介面(左边为IDE介面,右边为SATA介面)

IDE介面

如同图 2.1.3、技嘉主机板图示右侧的较宽的插槽所示,那就是IDE的介面插槽。 IDE介面插槽所使用的排线较宽,每条排线上面可以接两个IDE装置,由於可以接两个装置,那为了判别两个装置的主/从架构, 因此这种磁碟机上面需要调整跳针(Jump)成为Master或slave才行喔!这种介面的最高传输速度为Ultra 133规格, 亦即每秒理论传输速度可达133MBytes。

SATA介面

如同技嘉主机板图示右下方所示为SATA硬盘的连接介面插槽。 我们可以看到该插槽要比IDE介面的小很多,每条SATA连接线仅能接一个SATA装置。SATA介面除了速度较快之外, 由於其排线较细小所以有利於主机机壳内部的散热与安装!目前SATA已经发展到了第二代, 其速度由SATA-1的每秒150MBytes提升到SATA-2每秒300MBytes的传输速度喔, 也因此目前主流的个人计算机硬盘已经被SATA取代了。

SCSI介面

另一种常见於工作站等级以上的硬盘传输介面为SCSI介面,这种介面的硬盘在控制器上含有一颗处理器, 所以除了运转速度快之外,也比较不会耗费CPU资源喔!在个人计算机上面这种介面的硬盘不常见啦!


主机板

  • CMOS与BIOS

前面内存的地方我们有提过CMOS与BIOS的功能,在这里我们再来强调一下: CMOS主要的功能为记录主机板上面的重要参数, 包括系统时间、CPU电压与频率、各项设备的I/O位址与IRQ等,由於这些数据的记录要花费电力,因此主机板上面才有电池。 BIOS为写入到主机板上某一块 flash 或 EEPROM 的程序,他可以在开机的时候执行,以载入CMOS当中的参数, 并尝试呼叫储存装置中的开机程序,进一步进入操作系统当中。BIOS程序也可以修改CMOS中的数据, 每种主机板呼叫BIOS设定程序的按键都不同,一般桌上型计算机常见的是使用[del]按键进入BIOS设定画面。



猜你喜欢

转载自blog.csdn.net/weixin_37453450/article/details/80527141
今日推荐