【C语言进阶】文件操作

目录

为什么使用文件

什么是文件

程序文件

数据文件

文件名

文件的打开和关闭

文件指针

文件的打开和关闭

文件的顺序读写

 fputc函数

fgetc函数 

fputc函数 

fputs函数 

 fgets函数

fprintf函数 

fscanf函数 

fwrite函数 

fread函数 

sprintf和sscanf函数 

文件的随机读写

fseek函数

ftell函数

rewind函数

文本文件和二进制文件

文件读取结束的判定

被错误使用的feof

文件缓冲区


为什么使用文件

我们前面学习结构体时,写了通讯录的程序,当通讯录运行起来的时候,可以给通讯录中增加、删除数据,此时数据是存放在内存中,当程序退出的时候,通讯录中的数据自然就不存在了,等下次运行通讯录程序的时候,数据又得重新录入,如果使用这样的通讯录就很难受。
我们在想既然是通讯录就应该把信息记录下来,只有我们自己选择删除数据的时候,数据才不复存在。
这就涉及到了数据持久化的问题,我们一般数据持久化的方法有,把数据存放在磁盘文件、存放到数据库等方式。
使用文件我们可以将数据直接存放在电脑的硬盘上,做到了数据的持久化。
 

什么是文件

磁盘上的文件就是文件。
但是在程序设计中,我们一般谈的文件有两种:程序文件、数据文件(从文件功能的角度来分类的)。

程序文件

包括源程序文件(后缀为.c),目标文件(windows环境后缀为.obj),可执行程序(windows环境后缀为.exe)。

数据文件

文件的内容不一定是程序,而是程序运行时读写的数据,比如程序运行需要从中读取数据的文件,或者输出内容的文件。

我们这里讨论的是数据文件。

在以前所处理数据的输入输出都是以终端为对象的,即从终端的键盘输入数据,运行结果显示到显示器上。

其实有时候我们会把信息输出到磁盘上,当需要的时候再从磁盘上把数据读取到内存中使用,这里处理的就是磁盘上文件。

文件名

一个文件要有一个唯一的文件标识,以便用户识别和引用。
文件名包含3部分:文件路径+文件名主干+文件后缀
例如: d:\Ccode\test.txt
为了方便起见,文件标识常被称为文件名。

文件的打开和关闭

文件指针

缓冲文件系统中,关键的概念是“文件类型指针”,简称“文件指针”。
每个被使用的文件都在内存中开辟了一个相应的文件信息区,用来存放文件的相关信息(如文件的名字,文件状态及文件当前的位置等)。这些信息是保存在一个结构体变量中的。该结构体类型是有系统声明的,取名FILE.

例如,VS2013编译环境提供的 stdio.h 头文件中有以下的文件类型申明:

struct _iobuf {
    char* _ptr;
    int   _cnt;
    char* _base;
    int   _flag;
    int   _file;
    int   _charbuf;
    int   _bufsiz;
    char* _tmpfname;
};
typedef struct _iobuf FILE;

不同的C编译器的FILE类型包含的内容不完全相同,但是大同小异。

每当打开一个文件的时候,系统会根据文件的情况自动创建一个FILE结构的变量,并填充其中的信息,使用者不必关心细节。一般都是通过一个FILE的指针来维护这个FILE结构的变量,这样使用起来更加方便。

下面我们可以创建一个FILE*的指针变量:

FILE* pf;//文件指针变量

定义pf是一个指向FILE类型数据的指针变量。可以使pf指向某个文件的文件信息区(是一个结构体变量)。通过该文件信息区中的信息就能够访问该文件。也就是说,通过文件指针变量能够找到与它关联的文件。

比如:

文件的打开和关闭

文件在读写之前应该先 打开文件 ,在使用结束之后应该 关闭文件 。
在编写程序的时候,在打开文件的同时,都会返回一个 FILE* 的指针变量指向该文件,也相当于建立了指针和文件的关系。
ANSIC 规定使用 fopen 函数来打开文件, fclose 来关闭文件。

 

 

文件使用方式

含义  如果指定文件不存在
"r"(只读)

为了输入数据,打开一个已经存在的文本文件

出错
"w"(只写) 为了输入数据,打开一个文本文件3 建立一个新的文件
"a"(追加) 向文本文件尾部添加数据 建立一个新的文件
"rb"(只读) 为了输入数据,打开一个二进制文件 出错
"wb"(只写) 为了输入数据,打开一个二进制文件 建立一个新的文件
"ab"(追加) 向一个二进制文件尾部添加数据 出错
"r+"(读写) 为了读和写,打开一个文本文件 出错
"w+"(读写) 为了读和写,新建一个文本文件 建立一个新的文件
"a+"(读写) 打开一个文件,在文件尾部进行读写 建立一个新的文件
"rb+"(读写) 为了读和写,打开一个二进制文件 出错
"wb+"(读写) 为了读和写,新建一个二进制文件 建立一个新的文件
"ab+"(读写) 打开一个二进制文件,在文件尾部进行读写 建立一个新的文件

int main()
{
    //打开文件
    FILE* pf = fopen("test.txt", "r");//当前路径
    FILE* pf = fopen("D:\\code\\test.txt", "r");//绝对路径 
    if (pf == NULL)
    {
        perror("fopen");
        return 0;
    }
    //读文件
    
    //关闭文件
    fclose(pf);
    pf = NULL;

    return 0;
}

文件的顺序读写

 fputc函数

#include <stdio.h>

int main()
{
	FILE* pf = fopen("test.txt", "w");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//写文件 - 输出操作
	//abcd - xyz
	char ch = 'a';
	for (ch = 'a'; ch <= 'z'; ch++)
	{
		fputc(ch, pf);
	}

	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

fgetc函数 


int main()
{
	FILE* pf = fopen("test.txt", "r");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//读文件 - 输入操作
	int ch = 0;
	while ((ch = fgetc(pf)) != EOF)//EOF是文件结束标记,值为-1
	{
		printf("%c ", ch);
	}
	
	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

fputc函数 

#include <stdio.h>

int main()
{
	//标准输入流 stdin 键盘
	//标准输出流 stdout 屏幕
	//标准错误流 stderr 屏幕
	int ch = fgetc(stdin);
	printf("%c\n", ch);
	fputc(ch, stdout);
	return 0;
}

fputs函数 

int main()
{
	FILE* pf = fopen("test.txt", "w");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//写文件 - 写一行
	fputs("qwerasdzxc", pf);
	fputs("xxxxxxxxxx\n", pf);
	fputs("abcdefghij", pf);
	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

 

 fgets函数

int main()
{
	char arr[256] = { 0 };
	//打开文件
	FILE* pf = fopen("test.txt", "r");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	 }
	//读文件 - 写一行
	//fgets(arr, 25, pf);//最多读n-1个字符
	//printf("%s", arr);
	//fgets(arr, 25, pf);
	//printf("%s", arr);
    
	//fgets读取失败会返回NULL
	while (fgets(arr,256,pf)!=NULL)
	{
		printf("%s", arr);
	}
	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

 

fprintf函数 

struct S
{
	char name[20];
	int age;
	double score;
};

int main()
{
	
	struct S s = { "李四",20,87.2 };
	//打开文件

	FILE* pf = fopen("test.txt", "w");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//写文件
	fprintf(pf, "%s %d %lf", s.name, s.age, s.score);
	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

fscanf函数 

struct S
{
	char name[20];
	int age;
	double score;
};

int main()
{

	struct S s = { 0 };
	//打开文件

	FILE* pf = fopen("test.txt", "r");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//读文件
	fscanf(pf, "%s%d%lf", s.name, &(s.age), &(s.score));
	printf("%s %d %lf\n", s.name, s.age, s.score);
	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

fwrite函数 

int main()
{
	struct S s = { "李四",20,87.2 };
	//写文件 - 二进制的方式写
	FILE* pf = fopen("test.txt", "wb");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}

	//二进制的方式写文件

	fwrite(&s, sizeof(struct S), 1, pf);

	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;

}

fread函数 

int main()
{
	struct S s = { 0 };
	//写文件 - 二进制的方式写
	FILE* pf = fopen("test.txt", "rb");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}

	//二进制的方式读文件

	fread(&s, sizeof(struct S), 1, pf);

	printf("%s %d %lf", s.name, s.age, s.score);
	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

 

对比一组函数: 

scanf/fscanf/sscanf
printf/fprintf/sprintf

scanf
从标准输入流(stdin)上进行格式化输入的函数
fscanf
针对所有输入流的格式化的输入函数
sscanf
可以从一个字符串中提取(转化)出格式化数据

printf
向标准输出流(stdout)精选格式化输出的函数
fprintf
针对所有输出流的格式化的输出函数
sprintf
把一个格式化数据转化成字符串

sprintf和sscanf函数 

struct S
{
	char name[20];
	int age;
	double score;
};

int main()
{
	char buf[256] = { 0 };
	struct S s = { "李四",20,87.2 };
	struct S ret = { 0 };

	//将s结构体数据转化为字符串
	sprintf(buf, "%s %d %lf", s.name, s.age, s.score);
	printf("%s\n", buf);//字符串的形式

	//从buf字符串从提取结构体数据
	sscanf(buf, "%s %d %lf", ret.name, &(ret.age), &(ret.score));
	printf("%s %d %lf", ret.name, ret.age, ret.score);//格式化的形式
	return 0;
}

文件的随机读写

fseek函数

根据文件指针的位置和偏移量来定位文件指针

int main()
{
	FILE* pf = fopen("test.txt", "r");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//随机读

	int ch = fgetc(pf);
	printf("%c\n", ch);

	ch = fgetc(pf);
	printf("%c\n", ch);

	fseek(pf, -1, SEEK_END);

	ch = fgetc(pf);
	printf("%c\n", ch);

	fclose(pf);
	pf = NULL;
	return 0;
}

 

int main()
{
	FILE* pf = fopen("test.txt", "w");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//随机写
	fputc('a', pf);
	fputc('b', pf);
	fputc('c', pf);
	fputc('d', pf);

	fseek(pf, -3, SEEK_CUR);
	fputc('w', pf);

	fclose(pf);
	pf = NULL;
	return 0;
}

ftell函数

可以计算当前的文件指针对起始位置的偏移量

#include <stdio.h>

int main()
{
	FILE* pf = fopen("test.txt", "w");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//随机写
	fputc('a', pf);
	fputc('b', pf);
	fputc('c', pf);
	fputc('d', pf);

	fseek(pf, -3, SEEK_CUR);
	fputc('w', pf);
	long ret = ftell(pf);
	printf("%ld\n", ret);

	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

 

rewind函数

让文件指针的位置回到文件的起始位

int main()
{
	FILE* pf = fopen("test.txt", "w");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}
	//随机写
	fputc('a', pf);
	fputc('b', pf);
	fputc('c', pf);
	fputc('d', pf);

	fseek(pf, -3, SEEK_CUR);
	fputc('w', pf);

	long ret = ftell(pf);
	printf("%ld\n", ret);

	rewind(pf);
	ret = ftell(pf);
	printf("%ld\n", ret);

	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

文本文件和二进制文件

根据数据的组织形式,数据文件被称为文本文件或者二进制文件
数据在内存中以二进制的形式存储,如果不加转换的输出到外存,就是二进制文件
如果要求在外存上以ASCII码的形式存储,则需要在存储前转换。以ASCII字符的形式存储的文件就是文本文件

一个数据在内存中是怎么存储的呢?

字符一律以ASCII形式存储,数值型数据既可以用ASCII形式存储,也可以使用二进制形式存储。
如有整数10000,如果以ASCII码的形式输出到磁盘,则磁盘中占用5个字节(每个字符一个字节),而二进制形式输出,则在磁盘上只占4个字节(16进制存储),为10 27 00 00

文件读取结束的判定

被错误使用的feof

牢记:在文件读取过程中,不能用feof函数的返回值直接用来判断文件的是否结束。

而是应用于当文件读取结束的时候,判断是读取失败结束,还是遇到文件尾结束

1. 文本文件读取是否结束,判断返回值是否为 EOF ( fgetc ),或者 NULL ( fgets )
例如:

fgetc 判断是否为 EOF .
fgets 判断返回值是否为 NULL .

 
2. 二进制文件的读取结束判断,判断返回值是否小于实际要读的个数。
例如:
fread判断返回值是否小于实际要读的个数

int main()
{
	FILE* pf = fopen("test.txt", "w");
	if (pf == NULL)
	{
		perror("fopen");
		return 1;
	}

	int ch = 0;
	//fgetc 当读取失败的时候或者遇到文件结束的时候,都会返回EOF
	while ((ch = fgetc(pf)) != EOF) // 标准C I/O读取文件循环
	{
		putchar(ch);
	}

	//判断是什么原因结束的
	if (ferror(pf))
		puts("I/O error when reading");
	else if (feof(pf))
		puts("End of file reached successfully");

	//关闭文件
	fclose(pf);
	pf = NULL;
	return 0;
}

ferror函数判断是不是遇到错误而结束,

如果流中没有发生错误,ferror将返回0。否则,它将返回一个非零值。

feof函数判断是不是遇到文件末尾而结束,

如果当前位置不是文件末尾,则返回0。没有错误返回。

一定要在文件读取失败之后再判断!!!!

文件缓冲区

ANSIC 标准采用“缓冲文件系统”处理的数据文件的,所谓缓冲文件系统是指系统自动地在内存中为程序中每一个正在使用的文件开辟一块“文件缓冲区”。从内存向磁盘输出数据会先送到内存中的缓冲区,装满缓冲区后才一起送到磁盘上。如果从磁盘向计算机读入数据,则从磁盘文件中读取数据输入到内存缓冲区(充满缓冲区),然后再从缓冲区逐个地将数据送到程序数据区(程序变量等)。缓冲区的大小根据C编译系统决定的。
 

一般情况下,当缓冲区满了才会让操作系统将缓冲区的数据放到硬盘中 

#include <stdio.h>
#include <windows.h>

int main()
{
	FILE* pf = fopen("test.txt", "w");
	fputs("abcdef", pf);//先将代码放在输出缓冲区
	printf("睡眠10秒-已经写数据了,打开test.txt文件,发现文件没有内容\n");
	Sleep(10000);//睡眠10秒
	printf("刷新缓冲区\n");
	fflush(pf);//刷新缓冲区时,才将输出缓冲区的数据写到文件(磁盘)
	//注:fflush 在高版本的VS上不能使用了
	printf("再睡眠10秒-此时,再次打开test.txt文件,文件有内容了\n");
	Sleep(10000);
	fclose(pf);
	//注:fclose在关闭文件的时候,也会刷新缓冲区
	pf = NULL;
	return 0;
}

猜你喜欢

转载自blog.csdn.net/qq_54880517/article/details/124305391