使用Mini-ImageNet训练分类网络

数据集下载链接

百度网盘下载:
链接: https://pan.baidu.com/s/1Uro6RuEbRGGCQ8iXvF2SAQ 密码: hl31

数据集简介

提到Imagenet大家都知道,是一个非常大型、有名的开源数据集。一般设计一个新的分类网络就会在Imagenet 1000类的数据上进行训练以及验证。包括常见的目标检测网络等,所使用的backbone一般都会先基于Imagenet进行预训练。但对于普通研究员或者开发者而言,这个数据集太大了(全部下载大概有100GB左右),而且训练对硬件要求也非常高,通常都是很多块高端显卡并行训练,即使是这样的配置通常还要训练好几天的时间。所以让很多人望而却步(我就是其中之一,关键太大,而且国内下载很慢)。

2016年google DeepMind团队从Imagnet数据集中抽取的一小部分(大小约3GB)制作了Mini-Imagenet数据集,共有100个类别,每个类别都有600张图片,共60000张(都是.jpg结尾的文件),而且图像的大小并不是固定的。

数据集的结构为:

├── mini-imagenet: 数据集根目录
     ├── images: 所有的图片都存在这个文件夹中
     ├── train.csv: 对应训练集的标签文件
     ├── val.csv: 对应验证集的标签文件
     └── test.csv: 对应测试集的标签文件

Mini-Imagenet数据集中还包含了train.csvval.csv以及test.csv三个文件。需要注意的是,当时作者制作这个数据集时主要是针对小样本学习领域的,而且提供的标签文件并不是从每个类别中进行采样的。我自己用pandas包分析了下每个标签文件。

  • train.csv包含38400张图片,共64个类别。
  • val.csv包含9600张图片,共16个类别。
  • test.csv包含12000张图片,共20个类别。

每个csv文件之间的图像以及类别都是相互独立的,即共60000张图片,100个类。

pandas读取的csv文件数据格式如下,每一行对应一张图片的名称和所属类别:

                filename      label
0  n0153282900000005.jpg  n01532829
1  n0153282900000006.jpg  n01532829
2  n0153282900000007.jpg  n01532829
3  n0153282900000010.jpg  n01532829
4  n0153282900000014.jpg  n01532829

至于每个类别对应的实际物体名称,可查看这个json文件,这个文件是Imagenet1000类数据中对应的标签文件。

{
    
    "0": ["n01440764", "tench"], 
 "1": ["n01443537", "goldfish"], 
 "2": ["n01484850", "great_white_shark"],
 ...
}

制作新的train以及val文件

根据上面分析的,如果想用Mini-Imgenet数据集直接去训练自己的分类网络是不可行的,因为train.csvval.csv并不是从每个类别中进行采样的,所以我们需要自己去构建一个新的train.csvval.csv文件。下面是我自己写的一个构建train.csvval.csv标签文件的脚本,该脚本会从这100个类别中按给定的比例去划分训练集和验证集。

扫描二维码关注公众号,回复: 13818169 查看本文章
import os
import json

import pandas as pd
from PIL import Image
import matplotlib.pyplot as plt


def read_csv_classes(csv_dir: str, csv_name: str):
    data = pd.read_csv(os.path.join(csv_dir, csv_name))
    # print(data.head(1))  # filename, label

    label_set = set(data["label"].drop_duplicates().values)

    print("{} have {} images and {} classes.".format(csv_name,
                                                     data.shape[0],
                                                     len(label_set)))
    return data, label_set


def calculate_split_info(path: str, label_dict: dict, rate: float = 0.2):
    # read all images
    image_dir = os.path.join(path, "images")
    images_list = [i for i in os.listdir(image_dir) if i.endswith(".jpg")]
    print("find {} images in dataset.".format(len(images_list)))

    train_data, train_label = read_csv_classes(path, "train.csv")
    val_data, val_label = read_csv_classes(path, "val.csv")
    test_data, test_label = read_csv_classes(path, "test.csv")

    # Union operation
    labels = (train_label | val_label | test_label)
    labels = list(labels)
    labels.sort()
    print("all classes: {}".format(len(labels)))

    # create classes_name.json
    classes_label = dict([(label, [index, label_dict[label]]) for index, label in enumerate(labels)])
    json_str = json.dumps(classes_label, indent=4)
    with open('classes_name.json', 'w') as json_file:
        json_file.write(json_str)

    # concat csv data
    data = pd.concat([train_data, val_data, test_data], axis=0)
    print("total data shape: {}".format(data.shape))

    # split data on every classes
    num_every_classes = []
    split_train_data = []
    split_val_data = []
    for label in labels:
        class_data = data[data["label"] == label]
        num_every_classes.append(class_data.shape[0])

        # shuffle
        shuffle_data = class_data.sample(frac=1, random_state=1)
        num_train_sample = int(class_data.shape[0] * (1 - rate))
        split_train_data.append(shuffle_data[:num_train_sample])
        split_val_data.append(shuffle_data[num_train_sample:])

        # imshow
        imshow_flag = False
        if imshow_flag:
            img_name, img_label = shuffle_data.iloc[0].values
            img = Image.open(os.path.join(image_dir, img_name))
            plt.imshow(img)
            plt.title("class: " + classes_label[img_label][1])
            plt.show()

    # plot classes distribution
    plot_flag = False
    if plot_flag:
        plt.bar(range(1, 101), num_every_classes, align='center')
        plt.show()

    # concatenate data
    new_train_data = pd.concat(split_train_data, axis=0)
    new_val_data = pd.concat(split_val_data, axis=0)

    # save new csv data
    new_train_data.to_csv(os.path.join(path, "new_train.csv"))
    new_val_data.to_csv(os.path.join(path, "new_val.csv"))


def main():
    data_dir = "/home/wz/mini-imagenet/"  # 指向数据集的根目录
    json_path = "./imagenet_class_index.json"  # 指向imagenet的索引标签文件

    # load imagenet labels
    label_dict = json.load(open(json_path, "r"))
    label_dict = dict([(v[0], v[1]) for k, v in label_dict.items()])

    calculate_split_info(data_dir, label_dict)


if __name__ == '__main__':
    main()

训练自己的网络

项目地址:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing
pytorch_classification->mini-imagenet文件夹中,里面提供了两个训练脚本,一个是针对单GPU的,一个是针对多GPU的。在这个项目中是以训练ShuffleNetv2为例进行讲解的。训练了100个epoch,达到了78%的准确率。

shufflenetv2

接着,我拿这个预训练权重去做迁移学习,训练其他的小数据集,确实也有一定帮助。在我测试过程中,如果不使用预训练权重,训练自己的数据集能达到80%的准确率,如果使用预训练权重能达到90%的准确率。当然基于Mini-Imagenet的预训练权重和基于Imagenet的预训练权重还有一些差距,毕竟数据量摆在这。之前使用基于Imagenet的预训练权重准确率可以达到94%。
当然,对于自己新搭的网络,如果想快速验证一下,Mini-Imagenet也是一个不错的选择。

猜你喜欢

转载自blog.csdn.net/qq_37541097/article/details/113027489